Superdiffusions and Partial Differential Equations
超扩散和偏微分方程
基本信息
- 批准号:0503977
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The subject of the project is a class of measure-valued Markov processes called superdiffusions and the correponding class of semilinear elliptic equations. An intensive study of the connections between these two classes during the past 15 years resulted in developing a nonlinear analog of the classical probabilistic potential theory related to the Brownian motion. Some fundamental problems in this field were solved during the last three years which opens new directions of research. These directions will be explored. In particular, new probabilistic tools will be applied to problems on nonlinear differential equations. Harmonic functions in spaces of measures associated with superprocesses will be investigated which promises to open a new chapter in infinite dimensional analysis. In this connection, exit boundaries for superdiffusions will be explored - an attempt to extend Martin boundary theory to nonlinear PDEs.The goal of the proposal is to contribute to probabilistic analysis, which is an important branch of modern mathematics. Interactions between the theory of stochastic processes and the theory of partial differential equations are beneficial for both fields. At the beginning, mostly analytic results were used by probabilists. More recently, analysts (and physicists) took inspiration from the probabilistic approach. Of course, the development of analysis in general, and of theory of differential equations in particular, was motivated to a great extent by problems in physics. A difference between physics and probability is that the latter provides not only an intuition but also rigorous tools for proving theorems.
该项目的主题是一类称为超扩散的测度值马尔可夫过程和相应的半线性椭圆方程。 在过去的15年里,对这两类之间的联系进行了深入的研究,结果开发了与布朗运动相关的经典概率势理论的非线性模拟。 在过去的三年里,这一领域的一些基本问题得到了解决,开辟了新的研究方向。 将探讨这些方向。 特别是,新的概率工具将应用于非线性微分方程的问题。 超过程测度空间中的调和函数将被研究,这将为无限维分析开辟新的篇章。 在这方面,出口边界的超扩散将探讨-试图扩展马丁边界理论的非线性偏微分方程。该建议的目标是有助于概率分析,这是一个重要的分支的现代数学。 随机过程理论和偏微分方程理论之间的相互作用对这两个领域都是有益的。 最初,大多数分析结果被概率学家使用。 最近,分析师(和物理学家)从概率方法中获得了灵感。 当然,一般分析的发展,特别是微分方程理论的发展,在很大程度上是由物理问题推动的。 物理学和概率论的区别在于,后者不仅提供了一种直觉,而且提供了证明定理的严格工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eugene Dynkin其他文献
Eugene Dynkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eugene Dynkin', 18)}}的其他基金
Diffusions, Superdiffusions and Partial Differential Equations
扩散、超扩散和偏微分方程
- 批准号:
0204237 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Stochastic Processes and Semilinear Partial Differential Equations
随机过程和半线性偏微分方程
- 批准号:
9970942 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Branching Measure-Valued Processes and Related Nonlinear Partial Differential Equations
数学科学:分支测值过程及相关非线性偏微分方程
- 批准号:
9623190 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Branching Measure-Valued Stochastic Processes and Related Topics
数学科学:分支测值随机过程及相关主题
- 批准号:
9301315 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing grant
Sfc Travel Support (In Indian Currency) to Participate in The Working Conference on the Theory & Applications of Random Fields; Bangalore, India; Jan. 4-17, 1982
证监会旅行支持(以印度货币)参加理论工作会议
- 批准号:
8114597 - 财政年份:1982
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
-- - 项目类别:
ARC Future Fellowships
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
- 批准号:
2348846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
- 批准号:
DP220100937 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant