Topological Quantum Field Theories
拓扑量子场论
基本信息
- 批准号:0505735
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0505735Principal Investigator: Albert SchwarzThe first examples of topological quantum field theories wereconstructed by PI in the late seventies. The importance of suchtheories became clear in late eighties after Witten'spapers. Witten suggested a more general way of construction oftopological quantum field theories and used it to find newinteresting models. Among the most important topological theoriesare Chern-Simons theory, suggested by PI and Witten and solved byWitten, and Witten's topological sigma-models (A-model andB-model). Chern-Simons theory was very useful in knot theory.Topological sigma-models, especially mirror symmetry betweenA-and B-models, were used to obtain striking results inenumerative algebraic geometry. Topological version of gaugetheories led to remarkable developments in the theory offour-dimensional and three-dimensional manifolds. One can saythat topological quantum field theories opened the way forapplications of ideas borrowed from physics to puremathematics. However, these theories were used also as a powerfulinstrument in string/M-theory. It was shown by Witten thatstarting with any N=2 superconformal theory one can constructtopological quantum field theories by means of so calledtwisting. This means, in particular,that string theory with N=2superconformal target has topological sectors, that can beanalyzed more easily than complete theory. Topological sectorsserved as a testing ground for many important conjectures. Fromthe other side, for any critical string we can obtaintwo-dimensional topological theory considering matter fieldstogether with ghosts. More generally, two-dimensional topologicalquantum field theory obeying certain conditions can be "coupledto gravity"; the resulting theory can be considered as stringtheory.The present proposal is devoted to some problems related totopological quantum field theories. In particular, we would liketo relate recent developments in knot theory to the theory oftopological strings; it seems that this relation should lead toessential progress both in knot theory and in string theory. Weare planning to apply methods of number theory to topologicalstring theory. Our projects are interdisciplinary; theirrealization will be important both for mathematics andtheoretical physics.
AbstractAward:DMS-0505735首席研究员:阿尔伯特·施瓦茨拓扑量子场论的第一个例子是由PI在七十年代后期重建的。这些理论的重要性在维滕的论文发表后的80年代后期变得清晰起来。维滕提出了一种更普遍的方法来构造拓扑量子场论,并利用它来寻找新的有趣的模型。其中最重要的拓扑理论是由PI和维滕提出并由维滕解决的Chern-Simons理论,以及维滕的拓扑σ模型(A模型和B模型)。 Chern-Simons理论在纽结理论中非常有用,拓扑σ模型,特别是A-和B-模型之间的镜像对称,在计数代数几何中得到了惊人的结果。 拓扑版本的规范理论导致显着的发展理论四维和三维流形。 可以说,拓扑量子场论为将从物理学借用的思想应用到纯粹数学开辟了道路。然而,这些理论也被用作弦/M理论的有力工具。维滕证明,从任何N=2的超共形理论出发,人们可以通过所谓的扭曲来构造拓扑量子场论。这特别意味着,具有N= 2超共形目标的弦理论具有拓扑扇区,比完整理论更容易分析。 拓扑扇区是许多重要理论的试验场。另一方面,对于任意临界弦,我们都可以得到考虑物质场和鬼场的二维拓扑理论。更一般地说,二维拓扑量子场论在一定条件下可以“耦合到引力”,由此产生的理论可以被认为是弦理论。 特别是,我们想把纽结理论的最新发展与拓扑弦理论联系起来;似乎这种联系会使纽结理论和弦理论都取得实质性的进展。我们计划将数论的方法应用到拓扑弦理论中。 我们的项目是跨学科的,它们的实现对数学和理论物理都很重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Albert Schwarz其他文献
The solution space of the unitary matrix model string equation and the Sato Grassmannian
- DOI:
10.1007/bf02096545 - 发表时间:
1992-09-01 - 期刊:
- 影响因子:2.600
- 作者:
Konstantinos N. Anagnostopoulos;Mark J. Bowick;Albert Schwarz - 通讯作者:
Albert Schwarz
On Noncommutative Nahm Transform
- DOI:
10.1007/s002200050807 - 发表时间:
2000-04-01 - 期刊:
- 影响因子:2.600
- 作者:
Alexander Astashkevich;Nikita Nekrasov;Albert Schwarz - 通讯作者:
Albert Schwarz
Integrality of instanton numbers and <em>p</em>-adic B-model
- DOI:
10.1016/j.physletb.2006.04.012 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:
- 作者:
Maxim Kontsevich;Albert Schwarz;Vadim Vologodsky - 通讯作者:
Vadim Vologodsky
Frobenius transformation, mirror map and instanton numbers
- DOI:
10.1016/j.physletb.2008.01.006 - 发表时间:
2008-02-28 - 期刊:
- 影响因子:
- 作者:
Albert Schwarz;Vadim Vologodsky - 通讯作者:
Vadim Vologodsky
Integral invariants in flat superspace
- DOI:
10.1016/j.nuclphysb.2014.04.009 - 发表时间:
2014-07-01 - 期刊:
- 影响因子:
- 作者:
Renjun Xu;Michael Movshev;Albert Schwarz - 通讯作者:
Albert Schwarz
Albert Schwarz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Albert Schwarz', 18)}}的其他基金
Application of methods of arithmetic geometry and homological algebra to quantum field theory and string theory
算术几何和同调代数方法在量子场论和弦论中的应用
- 批准号:
0805989 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Noncommutative Geometry, Supergeometry, Gauge Theory and M-Theory
非交换几何、超几何、规范理论和 M 理论
- 批准号:
0204927 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Quantum Field Theory, Noncommutative Geometry and Supergeometry
量子场论、非交换几何和超几何
- 批准号:
9801009 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Noncommutative geometry, supergeometry, gauge theory and M-theory
非交换几何、超几何、规范理论和M理论
- 批准号:
9971304 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Problems of Quantum Field Theory
数学科学:量子场论的数学问题
- 批准号:
9500704 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Topological Methods in Quantum Field Theory and Methods of Quantum Field Theory in Topology
数学科学:量子场论中的拓扑方法和拓扑学中的量子场论方法
- 批准号:
9201366 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Quantum Field Theory for Topological Phases of Matter
物质拓扑相的量子场论
- 批准号:
2210182 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference on Quantum Symmetries: Tensor Categories, Topological Quantum Field Theories, and Vertex Algebras
量子对称会议:张量范畴、拓扑量子场论和顶点代数
- 批准号:
2228888 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Knotted surface invariants from 4-dimensional topological quantum field theories
4 维拓扑量子场论的打结表面不变量
- 批准号:
532076-2019 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
- 批准号:
2110030 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
The investigation of the non-triviality of string topology in a topological quantum field theory and differentiable stacks
拓扑量子场论和可微堆栈中弦拓扑非平凡性的研究
- 批准号:
21H00982 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Topological and conformal interfaces in two-dimensional quantum field theories
二维量子场论中的拓扑和共形界面
- 批准号:
2616598 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
K-theory of C*-algebras with Applications in Topological Quantum Field Theory
C*-代数的 K 理论及其在拓扑量子场论中的应用
- 批准号:
2601068 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
- 批准号:
2110038 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant