Topological Quantum Field Theory

拓扑量子场论

基本信息

  • 批准号:
    2204297
  • 负责人:
  • 金额:
    $ 25.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

In the 1980s, mathematics received an incredible influx of ideas coming from physics that had tremendous mathematical interest and applications. Topology is a field of mathematics that studies properties of shapes which are preserved under deformations such as stretching, crumpling, and bending, but not tearing or gluing. Quantum field theories that only depend on topological properties of space, and not geometric ones such as length and angle, became a field of mathematics, known as topological field theory (TFT). This project constitutes a multifaceted investigation of TFTs in dimensions three, four, and higher, using new techniques which have only been fully developed in the past decade. The problems considered are of a foundational nature, and answers to these are expected to lead to new techniques and interactions among different fields of mathematics and have potential applications in physics. Graduate students are an important part of this research program; graduate education, mentoring as well as dissemination of the results to the broader community of scientists via lectures and workshops is a key broader impact of the project.The PI's program will initially focus on recent advances relating TFT to the classification of smooth manifolds up to stable diffeomorphism. Special emphasis will be placed on 4-dimensional aspects and obtaining new examples of TFTs that distinguish homotopy equivalent manifolds. Another goal is to construct non-semisimple TFTs. Unlike the currently known examples, these have the potential to distinguish exotic smooth structures. A long-term goal of the program is to give a proof of the relative tangle hypothesis. This is the main missing part of Lurie’s proof of the cobordism hypothesis and fills a major gap in the proof of this important result.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在20世纪80年代,数学收到了来自物理学的令人难以置信的思想涌入,这些思想具有巨大的数学兴趣和应用。拓扑学是一个数学领域,研究在拉伸、起皱和弯曲等变形下保持的形状的性质,但不包括撕裂或粘合。量子场论只依赖于空间的拓扑性质,而不是几何性质,如长度和角度,成为一个数学领域,称为拓扑场论(TFT)。该项目使用在过去十年中才完全开发的新技术,对三维、四维和更高维度的TFT进行了多方面的研究。所考虑的问题是一个基础性的,这些问题的答案预计将导致新的技术和不同领域的数学之间的相互作用,并在物理学中有潜在的应用。研究生是这个研究计划的重要组成部分;研究生教育,指导以及通过讲座和研讨会向更广泛的科学家社区传播结果是该项目的关键广泛影响。PI的计划最初将专注于TFT与光滑流形分类的最新进展稳定的复同态。特别强调将放在4维方面,并获得区分同伦等效流形的TFT的新例子。另一个目标是构建非半简单TFT。与目前已知的例子不同,这些有可能区分外来的光滑结构。该计划的一个长期目标是证明相对缠结假设。这是Lurie证明协边假说的主要缺失部分,并填补了证明这一重要结果的主要空白。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Schommer-Pries其他文献

Christopher Schommer-Pries的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Schommer-Pries', 18)}}的其他基金

PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0902808
  • 财政年份:
    2009
  • 资助金额:
    $ 25.17万
  • 项目类别:
    Fellowship Award

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
  • 批准号:
    2304033
  • 财政年份:
    2023
  • 资助金额:
    $ 25.17万
  • 项目类别:
    Standard Grant
Quantum Field Theory for Topological Phases of Matter
物质拓扑相的量子场论
  • 批准号:
    2210182
  • 财政年份:
    2022
  • 资助金额:
    $ 25.17万
  • 项目类别:
    Continuing Grant
Conference on Quantum Symmetries: Tensor Categories, Topological Quantum Field Theories, and Vertex Algebras
量子对称会议:张量范畴、拓扑量子场论和顶点代数
  • 批准号:
    2228888
  • 财政年份:
    2022
  • 资助金额:
    $ 25.17万
  • 项目类别:
    Standard Grant
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
  • 批准号:
    2110030
  • 财政年份:
    2021
  • 资助金额:
    $ 25.17万
  • 项目类别:
    Standard Grant
Knotted surface invariants from 4-dimensional topological quantum field theories
4 维拓扑量子场论的打结表面不变量
  • 批准号:
    532076-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 25.17万
  • 项目类别:
    Postdoctoral Fellowships
The investigation of the non-triviality of string topology in a topological quantum field theory and differentiable stacks
拓扑量子场论和可微堆栈中弦拓扑非平凡性的研究
  • 批准号:
    21H00982
  • 财政年份:
    2021
  • 资助金额:
    $ 25.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Topological and conformal interfaces in two-dimensional quantum field theories
二维量子场论中的拓扑和共形界面
  • 批准号:
    2616598
  • 财政年份:
    2021
  • 资助金额:
    $ 25.17万
  • 项目类别:
    Studentship
K-theory of C*-algebras with Applications in Topological Quantum Field Theory
C*-代数的 K 理论及其在拓扑量子场论中的应用
  • 批准号:
    2601068
  • 财政年份:
    2021
  • 资助金额:
    $ 25.17万
  • 项目类别:
    Studentship
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
  • 批准号:
    2110038
  • 财政年份:
    2021
  • 资助金额:
    $ 25.17万
  • 项目类别:
    Standard Grant
Enumerative Geometry of Hitchin Systems and Topological Quantum Field Theory
希钦系统的枚举几何与拓扑量子场论
  • 批准号:
    2041740
  • 财政年份:
    2020
  • 资助金额:
    $ 25.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了