NER: Plasmon - Induced Magnetization of Metallic Nanostructures
NER:等离子激元 - 金属纳米结构的诱导磁化
基本信息
- 批准号:0508275
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2007-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This NER proposal is based on our recent experimental observation of plasmon-induced magnetism of nanostructured metallic samples. Our magnetic force microscopy measurements indicated that magnetization of an array of nanoholes in a non-magnetic metallic film can be achieved by illumination of the structure at the wavelengths corresponding to various surface plasmon excitations. This second-order nonlinear optical effect appears to affect propagation of light through an array of such nanoholes in a gold film as observed by spectroscopic measurements in external magnetic field. This effect can find numerous applications in magnetooptical data storage and optical communication and computing. For example, optically controlled magnetization in nanoscale metallic samples may considerably increase the density of magnetic data recording. On the other hand, our observations suggest the possibility to control transmission of nanoholes at a single-photon level with an external magnetic field. This possibility is extremely attractive in quantum communication applications. Both developments would potentially revolutionize their respective fields.We have formed a multidisciplinary team of Principal Investigators composed of a solid-state physicist (Smolyaninova), an expert in scanning probe microscopy (Schaefer), and an optical scientist (Smolyaninov) to enhance our understanding of this new magneto-optical effect and to explore its potential applications in magneto-optical data storage and optical communications. We are planning to achieve good in-situ control of the shape of nanofabricated metal nanostructures and, hence, their spectral properties by implementing precise scanning probe microscopy-based nanoindentation techniques. The intellectual merit of the proposed activity is based on large number of new ideas and concepts in nanoscience and engineering, such as plasmon-induced magnetization of nanostructured metallic samples that has let to introduction of novel optically controlled nanoscale-size sources of magnetic field. These original concepts have been introduced very recently by the team of principal investigators. The proposed activity will advance understanding of two-dimensional nanooptics of surface plasmon-polaritons. At the same time, the results of this research may open new ways of magneto-optical data storage. The new imagingand fabrication techniques we have developed, and will further develop, will be useful, not only for this project, but also for other nanoscience projects in electrical and computer engineering, Physics, Materials, and Chemistry and Biochemistry.Broad impact:This proposed research program will advance the state of the art in nanofabrication by application scanning-probe microscopy-based nanoindentation techniques. It will advance understanding of surface plasmon nanophotonics, which has become an essential tool in such diverse areas as optoelectronics, nanolithography, and biosensing. It will also advance education and training of undergraduate students in the areas of material science, magnetism, nanooptics, and Nanoscale science and technology. The P.I. and co-P.I.s of this proposed work have an outstanding record of involving undergraduate students in novel, publishable research projects. Undergraduates, including women and minority students, are involved with the work of the group every semester. particular strength of the proposed work is its breadth in terms of the range of experimental techniques in which students will obtain training, including optical instrumentation design and construction, nanofabrication, microscopy (optical, scanning, and TEM), and electronics. Students will also gain experience in theoretical modeling of nanostructures, including electromagnetic modeling.This proposal addresses the following research theme: Nanoscale Devices and System Architecture.
这NER建议是基于我们最近的实验观察等离子体诱导磁性的纳米结构的金属样品。我们的磁力显微镜测量表明,在非磁性金属膜中的纳米孔阵列的磁化可以通过在对应于各种表面等离子体激元激发的波长下照射结构来实现。这种二阶非线性光学效应似乎会影响光通过在金膜中的这种纳米孔阵列的传播,如通过在外部磁场中的光谱测量所观察到的。这种效应在磁光数据存储、光通信和计算中有着广泛的应用。例如,纳米级金属样品中的光学控制的磁化可以显著增加磁数据记录的密度。另一方面,我们的观察表明,在单光子水平与外部磁场控制纳米孔的传输的可能性。这种可能性在量子通信应用中极具吸引力。我们成立了一个多学科的首席研究员团队,由固态物理学家(Szaninova)、扫描探针显微镜专家(Schaefer)和光学科学家(Szaninov)组成,以加强我们对这种新的磁光效应的理解,并探索其在磁光数据存储和光通信方面的潜在应用。我们正计划实现良好的原位控制的纳米制造的金属纳米结构的形状,因此,他们的光谱特性,通过实施精确的扫描探针显微镜为基础的纳米压痕技术。拟议活动的智力价值是基于纳米科学和工程中的大量新思想和概念,例如纳米结构金属样品的等离子体激元诱导磁化,从而引入了新颖的光学控制纳米尺度尺寸的磁场源。这些最初的概念是由主要研究人员团队最近提出的。拟议的活动将促进了解二维纳米光学表面等离子体激元。同时,该研究成果可能为磁光数据存储开辟新的途径。新的imagingand制造技术,我们已经开发,并将进一步发展,将是有用的,不仅对这个项目,而且对其他nanoscience项目在电气和计算机工程,物理,材料,化学和Biochemistry.Broad impact:这个拟议中的研究计划将推进最先进的nanofabbits应用扫描探针显微镜为基础的纳米压痕技术。它将促进对表面等离子体纳米光子学的理解,表面等离子体纳米光子学已成为光电子学,纳米光刻和生物传感等不同领域的重要工具。它还将推进材料科学,磁学,纳米光学和纳米科学技术领域的本科生教育和培训。私家侦探这项工作的合作伙伴在让本科生参与新颖的、可持续的研究项目方面有着出色的记录。大学生,包括女生和少数民族学生,每学期都参与该小组的工作。 拟议的工作的特别优势是其在实验技术的范围方面的广度,学生将获得培训,包括光学仪器的设计和建设,纳米纤维,显微镜(光学,扫描和TEM),和电子学。 学生还将获得纳米结构理论建模的经验,包括电磁建模。本计划涉及以下研究主题:纳米尺度器件和系统架构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Schaefer其他文献
Application of Ion Energy Spectroscopy to Optimize the Pulsed Laser Deposition Parameters for SrTiO3−y Films
- DOI:
10.1007/s11664-025-11952-1 - 发表时间:
2025-04-27 - 期刊:
- 影响因子:2.500
- 作者:
Marcus Rose;R. Shipra;Jeonggoo Kim;Shiva Pokhrel;Richard Seabrease;Ryan Paxson;Madison Previti;David Schaefer;Rajeswari Kolagani - 通讯作者:
Rajeswari Kolagani
The Past in the Present—The Role of Analogical Reasoning in Epistemic Learning About How to Tackle Complex Policy Problems
过去在现在——类比推理在如何解决复杂政策问题的认知学习中的作用
- DOI:
10.1111/psj.12372 - 发表时间:
2019 - 期刊:
- 影响因子:3.8
- 作者:
D. Beach;David Schaefer;S. Smeets - 通讯作者:
S. Smeets
Development of a Training Program for Law Enforcement K9 Handlers to Administer Naloxone.
为执法 K9 处理人员制定纳洛酮管理培训计划。
- DOI:
10.5326/jaaha-ms-6965 - 发表时间:
2020 - 期刊:
- 影响因子:1.3
- 作者:
Ashley E. Mitek;M. McMichael;Brad Weir;Michael Smith;Danielle C Schneider;David Schaefer - 通讯作者:
David Schaefer
Moving Towards a Quantitative Understanding of Thrasher's Threat-Cohesion Hypothesis by Richard K. Moule Jr. A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved June 2011 by the Graduate Supervisory Committee: Charles Katz, Chair
《走向对 Thrasher 威胁凝聚力假说的定量理解》作者:Richard K. Moule Jr. 一篇论文,部分满足科学硕士学位的要求,由研究生监事委员会于 2011 年 6 月批准:查尔斯·卡茨 (Charles Katz),主席
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
J. Ready;T. Pratt;David Schaefer;Kathleen Mullan - 通讯作者:
Kathleen Mullan
Effect of Rapamycin on Filamentous Fungal Cell Walls
- DOI:
10.1016/j.bpj.2010.12.2840 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Usha Sripathineni;Bill J. Moss;Liming Zhao;Robert W. Roberson;David Schaefer;Mark R. Marten - 通讯作者:
Mark R. Marten
David Schaefer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Schaefer', 18)}}的其他基金
RAPID: Social Network Consequences for Underrepresented STEM Students as a University Transitions to Remote Activities
RAPID:随着大学过渡到远程活动,社交网络对代表性不足的 STEM 学生造成的后果
- 批准号:
2028029 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Multidimensionality of Race and Social Networks
种族和社交网络的多维性
- 批准号:
1918162 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
S-STEM: SuPporting Economically Disadvantaged Undergraduates in Physics (SPEeD-UP)
S-STEM:支持经济困难的物理学本科生 (SPEeD-UP)
- 批准号:
0966122 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
An REU/RET Site in Materials Research at Towson University
陶森大学材料研究 REU/RET 站点
- 批准号:
0453342 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
MRI: Acquisition of Equipment to Upgrade an Existing Atomic Force Microscope for Quantitative Force Measurements
MRI:采购设备以升级现有原子力显微镜以进行定量力测量
- 批准号:
0521395 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Implementation of an Active Learning Pedagogy into the General Physics Curriculum at Towson University
在陶森大学普通物理课程中实施主动学习教学法
- 批准号:
0127028 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Nanotechnology Research at Towson University
陶森大学纳米技术研究
- 批准号:
9977530 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Implementation of Nanotechnology Studies in the Undergraduate Curriculum
纳米技术研究在本科课程中的实施
- 批准号:
9851238 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Tamm plasmon polaritons在金属与有限全介质光子晶体组成的复杂周期结构中传输特性的研究
- 批准号:11004121
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Establishment of highly selective production method of metal nanoparticle dimer using plasmon induced chemical reaction
利用等离子体诱导化学反应高选择性生产金属纳米粒子二聚体的方法的建立
- 批准号:
22KJ2306 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
LEAPS-MPS: Investigation of Electrochromic Polymer Induced Plasmon Switching on Gold Nanocrystals and its Application for Smart Windows
LEAPS-MPS:金纳米晶体电致变色聚合物诱导等离子激元开关的研究及其在智能窗户中的应用
- 批准号:
2316845 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Plasmon-Induced Biocatalytic Regulation of Enzymes at the Protein-Nanomaterial Interface
蛋白质-纳米材料界面上等离激元诱导的酶生物催化调节
- 批准号:
573468-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
High-Precision Non-Contact Plasmon-Induced Intracellular Delivery
高精度非接触式等离激元诱导细胞内递送
- 批准号:
10813943 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Enhancement of methane reforming hydrogen production reaction using plasmon-induced charge separation by thermal radiation standing wave resonance
利用热辐射驻波共振等离激元诱导电荷分离增强甲烷重整制氢反应
- 批准号:
21K18864 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Plasmon-induced Triplet Energy Transfer (PITET) for Photon Upconversion
用于光子上转换的等离激元诱导三重态能量转移 (PITET)
- 批准号:
2147792 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
High-Precision Non-Contact Plasmon-Induced Intracellular Delivery
高精度非接触式等离激元诱导细胞内递送
- 批准号:
10661807 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Broadband plasmon-induced charge separation and hydrogen generation dynamics
宽带等离激元诱导的电荷分离和氢生成动力学
- 批准号:
21H02051 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Systematic Study of Plasmon-Induced Charge and Energy Transfer in Metal-Semiconductor Hybrids
金属-半导体混合材料中等离激元感应电荷和能量转移的系统研究
- 批准号:
2116514 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Plasmon-induced Triplet Energy Transfer (PITET) for Photon Upconversion
用于光子上转换的等离激元诱导三重态能量转移 (PITET)
- 批准号:
2003544 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant