Algorithmic and Experimental Arithmetic Geometry

算法与实验算术几何

基本信息

项目摘要

This proposal contains two projects related in various ways to the arithmetic of algebraic varieties and to the study of their rational points in particular. The aim of the first project is to devise and implement an algorithm that produces a nice set of equations for a given variety; this is important for doing further computations with it. In many cases, further computations would be infeasible without such a nice model. The second project is more specifically concerned with rational points on curves of higher genus. It is known that on each such curve there can be only finitely many rational points, but so far there is no algorithm that determines this set explicitly. We will improve and extend existing algorithms covering certain cases. We will then use them to gather statistical information from many curves to get some more precise idea on the behavior of their rational points. On the other hand, we plan to study possible approaches to a general algorithm that finds the set of rational points on any given curve.
这项建议包含两个项目有关的各种方式的算术代数品种和研究其合理的特别点。第一个项目的目标是设计和实现一个算法,为给定的变量生成一组很好的方程;这对于用它做进一步的计算很重要。在许多情况下,如果没有这样一个很好的模型,进一步的计算是不可行的。第二个项目是更具体地关注的合理点的曲线,更高的亏格。众所周知,在每一条这样的曲线上只能有1000个有理点,但到目前为止还没有算法来明确地确定这个集合。我们将改进和扩展现有的算法,涵盖某些情况下。然后,我们将使用它们从许多曲线中收集统计信息,以更精确地了解它们的有理点的行为。另一方面,我们计划研究一种通用算法的可能方法,该算法可以找到任何给定曲线上的有理点集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Stoll其他文献

Professor Dr. Michael Stoll的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Stoll', 18)}}的其他基金

The Cassels-Tate pairing for Jacobian varieties
雅可比簇的卡塞尔-泰特配对
  • 批准号:
    431476419
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The Generalized Fermat Equation with exponents 2, 3, n
指数为 2, 3, n 的广义费马方程
  • 批准号:
    239402565
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Rational Points on Surfaces of General Type
一般型曲面上的有理点
  • 批准号:
    174799833
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Units
Canonical Heights on Hyperelliptic Jacobians
超椭圆雅可比行列式的正则高度
  • 批准号:
    54063539
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Arithmetic of K3 Surfaces
K3 曲面的算术
  • 批准号:
    28545794
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mathematik
数学
  • 批准号:
    5277266
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Verification of strong BSD for elliptic curves and abelian surfaces over totally real number fields
全实数域上椭圆曲线和阿贝尔曲面的强 BSD 验证
  • 批准号:
    441241343
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
  • 批准号:
    DE240101106
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
REU Site: REU in Theoretical and Experimental Physics
REU 网站:REU 理论与实验物理
  • 批准号:
    2348872
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Experimental viral challenge in bronchiectasis to study the immunopathogenesis of exacerbations
支气管扩张实验性病毒攻击研究病情加重的免疫发病机制
  • 批准号:
    MR/Y008863/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Cognitive imprecision and ageing: experimental investigation of new theories of decision-making
认知不精确与衰老:新决策理论的实验研究
  • 批准号:
    24K00237
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cryogenic Experimental Laboratory for Low-background Australian Research
澳大利亚低本底研究低温实验实验室
  • 批准号:
    LE240100044
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
  • 批准号:
    EP/Y020839/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Dynamic optimization and experimental validation of a self-powered wrist-worn wearable device
自供电腕戴式可穿戴设备的动态优化与实验验证
  • 批准号:
    24K17226
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Experimental Actinide Nano-chemistry for the Future of the Civil UK Plutonium Inventory
英国民用钚库存未来的实验锕系纳米化学
  • 批准号:
    MR/X036634/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了