Verification of strong BSD for elliptic curves and abelian surfaces over totally real number fields

全实数域上椭圆曲线和阿贝尔曲面的强 BSD 验证

基本信息

项目摘要

The focus of this project is the conjecture of Birch and Swinnerton-Dyer (BSD for short) for elliptic curves over totally real number fields. An elliptic curve is an algebraic curve that carries a group structure. This means that we can add two points on the curve to get another point on the curve, and this addition has similar properties as the standard addition. Elliptic curves are important in various contexts within mathematics, for example in the proof of Fermat's Last Theorem or in cryptography.A totally real number field is an extension of the field Q of rational numbers that is generated by a root of a polynomial with rational coefficients all of whose roots are real numbers.Let E be an elliptic curve over a number field F.Using the numbers of points on E modulo each prime ideal of F, one can construct a certain function, the L-function of E. The BSD conjecture for E proposes a surprising connection between the analytic behavior of the L-function of E and certain "global" invariants of E. These invariants include properties of the group of F-rational points on E on the one hand and the number of elements of the mysterious Shafarevich-Tate group Sha(E/F) of E on the other hand. Since all other quantities that occur in the conjecture can be computed for a given E, the conjecture can be expressed as "Sha(E/F) is finite and has the expected number of elements".Birch and Swinnerton-Dyer originally formulated their conjecture for elliptic curves over Q. To prove this version is one of the seven "Millennium Problems" of the Clay Foundation.For general elliptic curves, the conjecture is wide open. It is not even known that Sha(E/F) is always finite. For so-called "modular" elliptic curves with additional properties, some parts of the conjecture are known, however, in particular the finiteness of Sha(E/F). Every elliptic curve defined over Q is modular, and so it was possible to verify the BSD conjecture for many individual elliptic curves over Q. In the predecessor of this project, we extended this to some modular abelian surfaces over Q, which are two-dimensional analogues of elliptic curves.The goal of this new project is to obtain the complete verification of the BSD conjecture also for many modular elliptic curves (and, if possible, also abelian surfaces) over totally real number fields F other than Q.The algorithms that we will develop and the data on Sha(E/F) that will result will also be useful outside the framework of this project.
本课题的重点是Birch和Swinnerton-Dyer(简称BSD)关于全实数域上椭圆曲线的猜想。椭圆曲线是一种带有群结构的代数曲线。这意味着我们可以将曲线上的两个点相加得到曲线上的另一个点,这个加法和标准加法有相似的性质。椭圆曲线在数学的各种背景下都很重要,例如在费马大定理的证明或密码学中。全实数域是有理数域Q的扩展,它是由有理数系数多项式的根生成的,其根都是实数。设E是数域F上的一条椭圆曲线。利用E上对F的每个素数理想取模的点的个数,可以构造一个函数,E的BSD猜想提出了E的l -函数的解析行为与E的某些“整体”不变量之间的惊人联系。这些不变量一方面包括E上的F有理点群的性质,另一方面包括E的神秘的shafarevic - tate群Sha(E/F)的元素数目。由于猜想中出现的所有其他数量都可以对给定的E进行计算,因此猜想可以表示为“Sha(E/F)是有限的,并且具有期望的元素数量”。Birch和Swinnerton-Dyer最初提出了关于q上椭圆曲线的猜想。为了证明这个猜想是Clay基金会的七个“千年问题”之一。对于一般椭圆曲线,这个猜想是完全开放的。我们甚至不知道Sha(E/F)总是有限的。然而,对于具有附加性质的所谓“模”椭圆曲线,猜想的某些部分是已知的,特别是Sha(E/F)的有限性。每一条定义在Q上的椭圆曲线都是模的,因此有可能对Q上的许多单独的椭圆曲线验证BSD猜想。在本项目的前作中,我们将其推广到Q上的一些模阿贝尔曲面,它们是椭圆曲线的二维类似物。这个新项目的目标是在除q以外的全实数域F上对许多模椭圆曲线(如果可能的话,也包括阿贝尔曲面)获得BSD猜想的完整验证。我们将开发的算法和Sha(E/F)上的数据也将在这个项目的框架之外有用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Stoll其他文献

Professor Dr. Michael Stoll的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Stoll', 18)}}的其他基金

The Cassels-Tate pairing for Jacobian varieties
雅可比簇的卡塞尔-泰特配对
  • 批准号:
    431476419
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The Generalized Fermat Equation with exponents 2, 3, n
指数为 2, 3, n 的广义费马方程
  • 批准号:
    239402565
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Algorithmic and Experimental Arithmetic Geometry
算法与实验算术几何
  • 批准号:
    171122635
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Rational Points on Surfaces of General Type
一般型曲面上的有理点
  • 批准号:
    174799833
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Units
Canonical Heights on Hyperelliptic Jacobians
超椭圆雅可比行列式的正则高度
  • 批准号:
    54063539
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Arithmetic of K3 Surfaces
K3 曲面的算术
  • 批准号:
    28545794
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mathematik
数学
  • 批准号:
    5277266
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships

相似国自然基金

水稻茎秆粗度和穗粒数多效性基因STRONG1的调控网络与作用机制分析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Twistors and Quantum Field Theory: Strong fields, holography and beyond
扭量和量子场论:强场、全息术及其他
  • 批准号:
    EP/Z000157/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Attosecond and Strong Field Physics in Correlated Multielectron System
相关多电子系统中的阿秒与强场物理
  • 批准号:
    2419382
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
High-Valent Iron-Oxo Species for Activation of Strong CH Bonds: New Designs with Novel Ab Initio Methods and Machine Learning
用于激活强CH键的高价铁氧物种:采用新颖的从头算方法和机器学习的新设计
  • 批准号:
    24K17694
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Understanding and Directing Selectivity in Functionalizations of Strong Covalent Bonds Utilizing Coordination-Sphere Effects
职业:利用配位球效应理解和指导强共价键官能化的选择性
  • 批准号:
    2338438
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
High-energy short-wavelength infrared soliton dynamics and sub-cycle strong-field physics
高能短波红外孤子动力学与亚周期强场物理
  • 批准号:
    EP/Z001250/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Probing the Cosmos with Strong Gravitational Lensing
用强引力透镜探测宇宙
  • 批准号:
    24K07089
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Accelerating Scientific Discovery via Deep Learning with Strong Physics Inductive Biases
职业:通过具有强物理归纳偏差的深度学习加速科学发现
  • 批准号:
    2338909
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Algorithms for simulation of strong-field multi-particle dynamics on quantum computers
量子计算机上强场多粒子动力学模拟算法
  • 批准号:
    24K08336
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advances on Combinatorics of the Real Line and Topology
实线与拓扑组合学研究进展
  • 批准号:
    23K03198
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SCC-IRG Track 1: Strengthening Resilience of Ojibwe Nations Across Generations (STRONG)
SCC-IRG 第 1 轨道:加强奥及布威民族代代相传的复原力(强)
  • 批准号:
    2233912
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了