Conference Proposal: Talbot Workshops 2005 - 2007: Geometric Langlands

会议提案:Talbot 研讨会 2005 - 2007:几何朗兰兹

基本信息

  • 批准号:
    0512714
  • 负责人:
  • 金额:
    $ 3.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-03-15 至 2009-02-28
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0512714Principal Investigator: Haynes R. Miller, Michael J. HopkinsThe Talbot program is a series of yearly workshop retreatsbringing together graduate students, recent PhDs, and facultymentors for an intense exploration of a topic of activemathematical research. The Talbot 2004 workshop was devoted tothe Stolz-Teichner model of elliptic cohomology and was mentoredby Stephan Stolz. The Talbot 2005 workshop will focus on thegeometric Langlands program and be mentored by David Ben-Zvi. Thegeometric Langlands program is one of the most fertile areas ofmathematics, integrating representation theory, topology, andalgebraic geometry. The original conjectures of Langlands tieinfinite-dimensional representation theory to the structure ofGalois groups, with profound applications to number theory. Fromthe geometric perspective deriving from the renowned theorem ofBorel-Weil-Bott, one would like to classify such representationsby equivariant sheaves on a parametrizing space. Drinfeld andLaumon, among others, adapted Langlands' original ideas forfunction fields to formulate a far reaching geometricgeneralization, now called the geometric Langlands program. Workin this area over the past twenty years has changed the face ofmodern representation theory. Recent advances, such as newgeometric generalizations of the classical Satake isomorphism,make this an ideal time to gather young mathematicians to studythese results, the techniques used to derive them, and newlyexposed avenues for future research.The Talbot workshops seek to introduce aspiring mathematicians toactive areas of mathematical research, foster community andcollaboration across subdisciplinary and institutional lines, andform pedagogical and research ties between establishedmathematicians and young researchers. The topic for Talbot 2004concerns a central problem in mathematics deeply related toneighboring areas of science. For instance, the crystallographicstudy of proteins, quantum states of particles, and the structureof integer solutions to polynomial equations are all central tochemistry, physics, and cryptography/number theory; their deeperstudy requires probing the algebraic structures that governaspects of their nature. Representation theory is precisely thefield of mathematics devoted to this study. Further, thegeometric Langlands program offers a unifying vision for thespecific algebraic structures suited to each of these areas,which are called reflection groups, Lie groups, and Galoisgroups. This Talbot workshop will bring together graduatestudents with different specialties and from many universities tospend a week focused on this important subject. The participantsand their mentor, David Ben-Zvi, will share a residence as wellas lectures, discussions, and meals. This informal atmosphere,mixing fellowship and intellectual interest, will promote aconcentrated study of the material and lay the foundation forfuture collaboration and research.
摘要:获奖:dms -0512714首席研究员:Haynes R. Miller, Michael J. hopkins Talbot项目是一系列的年度研讨会,汇集了研究生,最近的博士和教师导师,对一个活跃的数学研究主题进行深入的探索。Talbot 2004研讨会致力于研究椭圆上同调的Stolz- teichner模型,由Stephan Stolz指导。塔尔博特2005年研讨会将集中于几何朗兰兹程序,并由大卫本-兹维指导。几何朗兰兹程序是数学最丰富的领域之一,它集表示理论、拓扑学和代数几何于一体。朗兰兹的原始猜想将无限维表示理论与伽罗瓦群的结构联系在一起,对数论有着深远的应用。从著名的borel - weil - bott定理衍生出的几何角度来看,人们希望通过参数化空间上的等变束来对这种表示进行分类。德林菲尔德和劳蒙等人改编了朗兰兹关于函数场的原始思想,形成了一个影响深远的几何推广,现在被称为几何朗兰兹程序。在过去的二十年里,对这一领域的研究改变了现代表征理论的面貌。最近的进展,如经典竹同构的新几何推广,使得这是一个理想的时间来聚集年轻的数学家来研究这些结果,用于推导它们的技术,以及未来研究的新途径。Talbot研讨会旨在将有抱负的数学家引入活跃的数学研究领域,促进跨学科和机构线的社区和合作,并在成熟的数学家和年轻研究人员之间形成教学和研究联系。塔尔博特2004年的主题关注数学中的一个核心问题,该问题与邻近的科学领域密切相关。例如,蛋白质的晶体学研究、粒子的量子态和多项式方程的整数解的结构都是化学、物理和密码学/数论的核心;对它们进行更深入的研究,需要探究支配它们本质各方面的代数结构。表征理论正是致力于这一研究的数学领域。此外,几何朗兰兹程序为适合这些领域的特定代数结构提供了一个统一的愿景,这些结构被称为反射群、李群和伽罗isgroup。塔尔博特研讨会将汇集来自不同专业和多所大学的研究生,花一周时间专注于这一重要课题。参与者和他们的导师David Ben-Zvi将共享住所、讲座、讨论和用餐。这种非正式的氛围,混合了友谊和学术兴趣,将促进对材料的集中研究,并为未来的合作和研究奠定基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haynes Miller其他文献

Haynes Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haynes Miller', 18)}}的其他基金

Conference: Young Topologists Meeting 2022
会议:2022 年青年拓扑学家会议
  • 批准号:
    2222375
  • 财政年份:
    2022
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
2020 - 2022 Talbot Workshops on Mathematics Centering on Algebraic Topology
2020 - 2022年以代数拓扑为中心的塔尔伯特数学研讨会
  • 批准号:
    1953947
  • 财政年份:
    2020
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Continuing Grant
Classical Methods in Motivic Homotopy Theory
动机同伦理论中的经典方法
  • 批准号:
    1906072
  • 财政年份:
    2019
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Continuing Grant
2017-2019 Talbot Workshops
2017-2019 塔尔博特研讨会
  • 批准号:
    1623977
  • 财政年份:
    2016
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
2014-2016 Talbot Workshops
2014-2016 塔尔博特研讨会
  • 批准号:
    1406356
  • 财政年份:
    2014
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
The Legacy of Daniel Quillen: K-Theory And Homotopical Algebra
Daniel Quillen 的遗产:K 理论和同伦代数
  • 批准号:
    1206449
  • 财政年份:
    2012
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
Talbot Workshops 2011 - 2013
塔尔博特研讨会 2011 - 2013
  • 批准号:
    1007096
  • 财政年份:
    2010
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
Mathematics Communication Space: Resource for Educators
数学交流空间:教育工作者资源
  • 批准号:
    1043632
  • 财政年份:
    2010
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Homotopy Theory: Applications and New Dimensions
合作研究:同伦理论:应用和新维度
  • 批准号:
    0905950
  • 财政年份:
    2009
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Continuing Grant
Summer Workshop on Homotopy Theory; Cambridge, MA
同伦理论夏季研讨会;
  • 批准号:
    0943108
  • 财政年份:
    2009
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant

相似海外基金

RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
  • 批准号:
    2908868
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Studentship
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
  • 批准号:
    24K17404
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: Supporting Mentoring in STEM Graduate Education: A Proposal for Virtual Workshops and Supporting Activities
会议:支持 STEM 研究生教育辅导:虚拟研讨会和支持活动的提案
  • 批准号:
    2413980
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
  • 批准号:
    EP/Y034392/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Research Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
  • 批准号:
    2424057
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
Travel: Texas Power and Energy Conference (TPEC) 2024 Travel Proposal
旅行:德克萨斯州电力与能源会议 (TPEC) 2024 年旅行提案
  • 批准号:
    2341300
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
Business and Local Government Data Research Centre Legacy Status Proposal
企业和地方政府数据研究中心遗留状态提案
  • 批准号:
    ES/Y003411/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Research Grant
Lite(House) - A Financially Flexible, Adaptive and Efficient Live/Work Housing Proposal
Lite(House) - 财务灵活、适应性强且高效的生活/工作住房提案
  • 批准号:
    10071140
  • 财政年份:
    2023
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Collaborative R&D
Proposal of effective utilization of polyphenols as functional food ingredients for realization of a healthy longevity society
有效利用多酚作为功能性食品成分以实现健康长寿社会的提案
  • 批准号:
    23K10889
  • 财政年份:
    2023
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了