XPS: FULL: Emerging Nonvolatile Memory for Analog-iterative Numerical Methods
XPS:FULL:用于模拟迭代数值方法的新兴非易失性存储器
基本信息
- 批准号:1628384
- 负责人:
- 金额:$ 82.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A new type of computer memory - crosspoint resistive memory - hasemerged as a likely candidate to replace current memory technology infuture computing systems. This memory allows for potential computerdesigns with high memory capacity and with memory incorporateddirectly into processing units. Novel thinking about computationalmethods is required to exploit the potential of these novelsystems. This project will explore new, fundamental methods in thefield of numerical optimization that are suited to implementation oncomputer systems that incorporate crosspoint resistive memory. Thefield of optimization is chosen as a testbed because of its importanceto a wide range of scientific disciplines.Crosspoint memory has unprecedented advantages in capacity and accesslatency. Substantial innovation is required to fully exploit thepotential benefits of integrating memory into processing units;current algorithms are unsuitable, because they are constrained by thevon Neumann bottleneck. The PIs will design the Gigascale Analog IterativeNetwork Solver (GAINS), a system architecture to enable efficientin-situ data processing. GAINS alters the application-, architecture-,and logic/circuit-level abstractions that enable designers anddevelopers at each layer to work independently. (i) It promotesmatrices to a first-class data type. (ii) It integrates computataionand memory, avoiding pitfalls of conventional memoryhierarchies. (iii) It exploits multi-valued representations in storageand computation. (iv) It replaces binary logic circuits withmulti-valued analog circuits, reducing area overhead and powerconsumption. The PIs will investigate the effects of this changed paradigmon the design of algorithms in numerical optimization and machinelearning.
一种新型的计算机存储器--交叉点电阻存储器--已经成为未来计算系统中取代当前存储器技术的可能候选者。这种存储器允许潜在的计算机设计与高存储容量和存储器直接扩展到处理单元。 需要对计算方法进行新的思考,以利用这些新系统的潜力。这个项目将探索新的,在数值优化领域的基本方法,适用于实施对计算机系统,包括交叉点电阻存储器。交叉点存储器在容量和访问延迟方面具有前所未有的优势,因此,交叉点存储器被选为优化领域的试验平台,因为它对广泛的科学学科具有重要意义。要充分利用将存储器集成到处理单元中的潜在好处,需要大量的创新;目前的算法是不合适的,因为它们受到冯·诺依曼瓶颈的限制。PI将设计千兆级模拟迭代网络解算器(GAINS),这是一个能够有效进行现场数据处理的系统架构。GAINS改变了应用程序、体系结构和逻辑/电路级的抽象,使每一层的设计人员和开发人员能够独立工作。(i)它将矩阵提升为一级数据类型。(ii)它集成了计算和内存,避免了传统内存层次结构的缺陷。(iii)它利用了存储和计算中的多值表示。 (iv)它用多值模拟电路代替了二进制逻辑电路,减少了面积开销和功耗。PI将研究这种改变的范例对数值优化和机器学习算法设计的影响。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Random permutations fix a worst case for cyclic coordinate descent
- DOI:10.1093/imanum/dry040
- 发表时间:2016-07
- 期刊:
- 影响因子:2.1
- 作者:Ching-pei Lee;Stephen J. Wright
- 通讯作者:Ching-pei Lee;Stephen J. Wright
First-Order Algorithms Converge Faster than O(1/k) on Convex Problems
一阶算法在凸问题上的收敛速度快于 O(1/k)
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Lee, C-p;Wright, S
- 通讯作者:Wright, S
Analyzing random permutations for cyclic coordinate descent
- DOI:10.1090/mcom/3530
- 发表时间:2017-06
- 期刊:
- 影响因子:0
- 作者:Stephen J. Wright;Ching-pei Lee
- 通讯作者:Stephen J. Wright;Ching-pei Lee
Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization
用于正则化优化的不精确变量度量随机块坐标下降
- DOI:10.1007/s10957-020-01639-4
- 发表时间:2020
- 期刊:
- 影响因子:1.9
- 作者:Lee, Ching-pei;Wright, Stephen J.
- 通讯作者:Wright, Stephen J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikko Lipasti其他文献
Mikko Lipasti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikko Lipasti', 18)}}的其他基金
FoMR: IPC-MASTA: Boosting IPC with Microarchitectural Support for Tightly-Coupled Accelerators
FoMR:IPC-MASTA:通过紧耦合加速器的微架构支持增强 IPC
- 批准号:
2010830 - 财政年份:2020
- 资助金额:
$ 82.5万 - 项目类别:
Standard Grant
I-Corps: Customizable and scalable high-performance microprocessor
I-Corps:可定制和可扩展的高性能微处理器
- 批准号:
1720263 - 财政年份:2017
- 资助金额:
$ 82.5万 - 项目类别:
Standard Grant
SHF: Small: SlackTrack: Efficiently Exploiting Circuit Slack in Multi-Cycle Datapaths
SHF:小型:SlackTrack:有效利用多周期数据路径中的电路空闲
- 批准号:
1615014 - 财政年份:2016
- 资助金额:
$ 82.5万 - 项目类别:
Standard Grant
SHF: Small: Reliable In-place Execution for Multicore Processors
SHF:小型:多核处理器的可靠就地执行
- 批准号:
1318298 - 财政年份:2013
- 资助金额:
$ 82.5万 - 项目类别:
Standard Grant
I-Corps: Accurate and energy-efficient sensory stream analysis via configurable trigger signature detection
I-Corps:通过可配置的触发签名检测进行准确且节能的感官流分析
- 批准号:
1262117 - 财政年份:2012
- 资助金额:
$ 82.5万 - 项目类别:
Standard Grant
SHF: Small: Arbitration, Coherence, and Consistency for Nanophotonic Multicore Processors
SHF:小型:纳米光子多核处理器的仲裁、连贯性和一致性
- 批准号:
1116450 - 财政年份:2011
- 资助金额:
$ 82.5万 - 项目类别:
Standard Grant
Lazy Logic: Minimizing Activity to Reduce Processor Power Consumption
惰性逻辑:最大限度地减少活动以降低处理器功耗
- 批准号:
0702272 - 财政年份:2007
- 资助金额:
$ 82.5万 - 项目类别:
Standard Grant
Collaborative Coherence: Streamlining Shared Memory Performance
协作一致性:简化共享内存性能
- 批准号:
0429854 - 财政年份:2004
- 资助金额:
$ 82.5万 - 项目类别:
Continuing Grant
CAREER: Semantic Decomposition of Instruction Sets
职业:指令集的语义分解
- 批准号:
0133437 - 财政年份:2002
- 资助金额:
$ 82.5万 - 项目类别:
Continuing Grant
相似国自然基金
钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
- 批准号:51871067
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Human-Robot Co-Evolution: Achieving the full potential of future workplaces
人机协同进化:充分发挥未来工作场所的潜力
- 批准号:
DP240100938 - 财政年份:2024
- 资助金额:
$ 82.5万 - 项目类别:
Discovery Projects
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 82.5万 - 项目类别:
Research Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 82.5万 - 项目类别:
Standard Grant
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
- 批准号:
2338371 - 财政年份:2024
- 资助金额:
$ 82.5万 - 项目类别:
Standard Grant
CAREER: From Flamelet to Full-Scale: Advancing Plasma-Assisted Combustion for Low-Emission Sustainable Fuels
职业生涯:从小火焰到全面:推进低排放可持续燃料的等离子体辅助燃烧
- 批准号:
2339518 - 财政年份:2024
- 资助金额:
$ 82.5万 - 项目类别:
Continuing Grant
STTR Phase II: Dermatologist-level detection of suspicious pigmented skin lesions from high-resolution full-body images
STTR II 期:通过高分辨率全身图像对可疑色素性皮肤病变进行皮肤科医生级别的检测
- 批准号:
2335086 - 财政年份:2024
- 资助金额:
$ 82.5万 - 项目类别:
Cooperative Agreement
Toward carbon-neutral society: Development of a full-sustainable eco-friendly green mining process for gold recovery
迈向碳中和社会:开发完全可持续的环保绿色采矿工艺以回收黄金
- 批准号:
24K17540 - 财政年份:2024
- 资助金额:
$ 82.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 82.5万 - 项目类别:
Continuing Grant
All Analogue Full-duplex Dual-receiver Radio for Wideband Mm-wave Communications
用于宽带毫米波通信的全模拟全双工双接收器无线电
- 批准号:
EP/X041581/1 - 财政年份:2024
- 资助金额:
$ 82.5万 - 项目类别:
Research Grant
Full mitigation of birefringence for high-precision optical experiments
完全缓解双折射,实现高精度光学实验
- 批准号:
24K00649 - 财政年份:2024
- 资助金额:
$ 82.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)