A New-Class of Molecularly-Engineered Nanoporous Dielectric Materials for Insulation in Device Wiring for Integrated Circuits

一种新型分子工程纳米多孔介电材料,用于集成电路器件布线的绝缘

基本信息

  • 批准号:
    0519081
  • 负责人:
  • 金额:
    $ 36.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

This project aims for a new strategy to develop a unique class of nanoporous low permittivity Si-C-H-O dielectric material with built-in thermochemical and mechanical stability, and enable its integration with Cu wiring in integrated circuits without using a separate interfacial layer. Rapid Cu diffusion into adjacent insulating dielectric material and poor Cu-dielectric interfacial adhesion are major issues in device wiring in electronic circuits. Typically, 10-20 nm-thick transition-metal based interfacial barrier layers are used to circumvent the problem. Such thick barrier layers cannot be used in sub-50-nm devices because they decrease the space meant for low-resistivity Cu and neutralize the main advantage of Cu wiring. Ultrathin (e.g., 3 nm) barriers required of these materials are not easy to deposit by conventional methods, especially to conformally coat high depth-to-width aspect ratio features common in multilevel wiring. Intellectual merit: Self- assembled molecular nanolayers (SAMs) offer potential to overcome shortcomings of conventional barriers while enhancing the chemical and mechanical integrity of the Cu-dielectric interface. This project seeks to integrate low-polarizability organosilane SAMs into porous dielectrics during synthesis and develop an understanding of the electrical and mechanical properties, and chemical and thermal stability, to enable the direct integration of this material with Cu. The approach involves incorporating (a) chemical-attack-inhibiting moieties on external and internal surfaces and (b) molecular bridges and ordered pores to mechanically reinforce porous dielectrics. Specific objectives are to: (i) Synthesize barrier-less dielectrics through the incorporation of pore-passivating and adhesion-enhancing molecular moieties into silica-based porous dielectrics; (ii) Mechanically reinforce the porous dielectric by creating ordered pores, and molecular bridging of pore walls by cross-linking low-polarizability organosilanes; (iii) Characterize the effects of the above strategies on dielectric properties, thermal and chemical stability, resilience to Cu-diffusion, and Cu-dielectric interfacial adhesion; and (iv) Understand and optimize the effects of molecular termini, chain length, and fraction of intra-pore molecular crosslinking, and processing parameters on properties. To achieve the above, organosilanes with Cu immobilizing, hydrophobic, or cross-linkable termini will be introduced into micellar templates used in sol-gel synthesis of porous silica, and integrated with the dielectric during gelation and post-treatments. Processing-structure-chemistry-property relationships will be revealed through a combination of electrical tests during thermal annealing in controlled ambients, four-point-bend adhesion tests, nanoindentation, atomic force microscopy, x-ray photoelectron spectroscopy, and transmission electron microscopy.Broader impact: The success of this approach could revolutionize wiring design and fabrication for integrated circuits with sub-50-nm devices by obviating interfacial barrier layers between metals and dielectrics. The new knowledge gained from this study will provide atomistic insights on key properties of molecularly engineered porous dielectrics, aid in combining nanostructure self-assembly with device fabrication, and contribute towards bridging micro- and nano-device technologies. The project will also provide a unique opportunity for interdisciplinary training of graduate and undergraduate students through research in molecular self-assembly, sol-gel processing, materials characterization, and device fabrication and testing. Collaborative interactions with IBM will enrich the students' learning experience. A summer internship for two high-school teachers is planned to create and share demonstrations for use in their classrooms. This new activity will complement ongoing visits and reverse-visits to high-schools in the capital region and Rensselaer, contribute to increasing students' awareness on self-assembly and nanodevices and their connection with applied physics and chemistry, and kindle students' interest in science and engineering. The research will be integrated in the self-assembly and molecular nanostructures of a Nanostructured Materials course taught by the PI through an interactive web-module.
该项目旨在开发一种独特的纳米多孔低介电常数Si-C-H-O介电材料,具有内置的热化学和机械稳定性,并使其与集成电路中的Cu布线集成,而无需使用单独的界面层。Cu向相邻绝缘电介质材料中的快速扩散以及Cu-电介质界面粘附性差是电子电路中的器件布线中的主要问题。通常,使用10-20 nm厚的基于过渡金属的界面阻挡层来规避该问题。这种厚的阻挡层不能用于亚50纳米器件,因为它们减少了用于低电阻率Cu的空间,并抵消了Cu布线的主要优点。超薄(例如,这些材料所需的阻挡层不容易通过常规方法存款,特别是不容易共形地涂覆多层布线中常见的高深宽比特征。智力优点:自组装分子纳米层(SAM)提供了克服常规屏障的缺点同时增强Cu-电介质界面的化学和机械完整性的潜力。该项目旨在将低极化率有机硅烷自组装膜在合成过程中整合到多孔硅中,并了解其电学和机械性能以及化学和热稳定性,以使这种材料与Cu直接整合。该方法包括将(a)化学攻击抑制部分的外部和内部表面和(B)分子桥和有序的孔,以机械增强多孔陶瓷。具体目标是:(i)通过将孔钝化和粘附增强的分子部分结合到基于二氧化硅的多孔介电层中来合成无阻挡层介电层;(ii)通过产生有序孔和通过交联低极化率有机硅烷的孔壁的分子桥接来机械地增强多孔介电层;(三)说明上述策略对介电性能、热稳定性和化学稳定性、对铜扩散的恢复力以及铜-电介质界面粘附力的影响;以及(iv)了解并优化分子末端、链长、孔内分子交联分数以及加工参数对性能的影响。为了实现上述目标,将具有Cu固定、疏水或交联末端的有机硅烷引入到用于多孔二氧化硅的溶胶-凝胶合成的胶束模板中,并在凝胶化和后处理期间与电介质集成。通过在受控环境中进行热退火过程中的电气测试、四点弯曲附着力测试、纳米压痕、原子力显微镜、X射线光电子能谱和透射电子显微镜,将揭示工艺-结构-化学-性能之间的关系。这种方法的成功可能会彻底改变布线设计和制造的集成电路与低于50-纳米器件,消除了金属和硅之间的界面阻挡层。从这项研究中获得的新知识将为分子工程多孔陶瓷的关键特性提供原子论见解,有助于将纳米结构自组装与器件制造相结合,并有助于桥接微型和纳米器件技术。 该项目还将通过分子自组装、溶胶-凝胶处理、材料表征以及器件制造和测试方面的研究,为研究生和本科生的跨学科培训提供独特的机会。与IBM的协作互动将丰富学生的学习体验。计划为两名高中教师提供暑期实习机会,以创建和分享在课堂上使用的演示。这项新活动将补充对首都地区和伦斯勒高中的持续访问和反向访问,有助于提高学生对自组装和纳米器件及其与应用物理和化学的联系的认识,并激发学生对科学和工程的兴趣。该研究将通过互动网络模块整合到PI教授的纳米结构材料课程的自组装和分子纳米结构中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ganpati Ramanath其他文献

Civil Society-Driven Drug Policy Reform for Health and Human Welfare—India
  • DOI:
    10.1016/j.jpainsymman.2016.10.362
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nandini Vallath;Tripti Tandon;Tania Pastrana;Diederik Lohman;S. Asra Husain;James Cleary;Ganpati Ramanath;M.R. Rajagopal
  • 通讯作者:
    M.R. Rajagopal
Microstructure control and property switching in stress-free van der Waals epitaxial VOsub2/sub films on mica
云母上无应力范德华外延 VO₂ 薄膜的微观结构控制和性能转换
  • DOI:
    10.1016/j.matdes.2023.111864
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Erik Ekström;Simon Hurand;Arnaud le Febvrier;Anna Elsukova;Per O.Å. Persson;Biplab Paul;Fredrik Eriksson;Geetu Sharma;Oleksandr Voznyy;Davide G. Sangiovanni;Ganpati Ramanath;Per Eklund
  • 通讯作者:
    Per Eklund

Ganpati Ramanath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ganpati Ramanath', 18)}}的其他基金

BRITE Relaunch: Manufacturing Multilayers of Molecularly-Bonded Inorganic Nanointerfaces for Accessing and Tuning Novel Properties
BRITE 重新推出:制造多层分子键合无机纳米界面以获取和调整新特性
  • 批准号:
    2135725
  • 财政年份:
    2021
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Mechanical and Thermal Properties and Their Coupling at Nanomolecularly Modified Metal-Ceramic Interfaces
合作研究:了解纳米分子改性金属陶瓷界面的机械和热性能及其耦合
  • 批准号:
    1100933
  • 财政年份:
    2011
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: MOSFETS WITH ATOMICALLY ENGINEERED METAL/HIGH-K INTERFACES
合作研究:具有原子工程金属/高 K 界面的 MOSFET
  • 批准号:
    1002282
  • 财政年份:
    2010
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Multipurpose X-Ray Diffractometer for Advanced Materials Research and Education
MRI:购买多功能 X 射线衍射仪用于先进材料研究和教育
  • 批准号:
    0821536
  • 财政年份:
    2008
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Standard Grant
U.S.-India Advanced Studies Institute for Nanoscale Science and Engineering
美印纳米科学与工程高级研究所
  • 批准号:
    0732645
  • 财政年份:
    2007
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Standard Grant
Self-Assembled Molecular Nanolayers for Interfacial Isolation in Device Interconnections
用于器件互连中界面隔离的自组装分子纳米层
  • 批准号:
    0501488
  • 财政年份:
    2005
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Continuing Grant
Collaborative Research: MEMS from Organized Mesoscale Architectures of Carbon Nanotubes
合作研究:来自碳纳米管有序介观结构的 MEMS
  • 批准号:
    0424322
  • 财政年份:
    2004
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Continuing Grant
REU SITE: Research Experiences for Undergraduates in Materials Science and Engineering
REU 网站:材料科学与工程本科生的研究经验
  • 批准号:
    0097589
  • 财政年份:
    2001
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Continuing Grant
CAREER: Microstructure Evolution and Interfacial Reaction Paths in Cu Alloy Thin Films
职业:铜合金薄膜中的微观结构演变和界面反应路径
  • 批准号:
    9984478
  • 财政年份:
    2000
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Continuing Grant

相似国自然基金

Class Ⅲ型过氧化物酶基因OsPOX8.1调控水稻抗褐飞虱的分子机制研究
  • 批准号:
    32301918
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
拟南芥Class II TCP转录因子调控雌蕊顶端命运决定的分子机制
  • 批准号:
    32300291
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PAR1介导的MHC class I表达探讨血府逐瘀汤逆转肺癌免疫逃逸的作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无细胞生物合成S-腺苷甲硫氨酸自由基依赖的Class B甲基转移酶的系统构筑及应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
CAMKIV-MHC Class I-ER Stress途径对骨骼肌炎症及再生的调控及机制研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
时空 g-class Ornstein-Uhlenbeck 型过程的统计推断问题研究
  • 批准号:
    11801355
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Class IIa 类乳酸菌细菌素 plantaricin YKX 在亚抑菌浓度下对脂环酸芽孢杆菌 QS 系统的调控机理研究
  • 批准号:
    31801563
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Class I HDACs介导的DNA损伤修复和转录重编程在肝癌发生中的作用研究
  • 批准号:
    81872019
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
Class III PI3K通过负反馈AngII/AT1信号通路调节血管内皮细胞衰老的分子机制研究
  • 批准号:
    81771509
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
  • 批准号:
    EP/Z000610/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Research Grant
Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
  • 批准号:
    2416250
  • 财政年份:
    2024
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Standard Grant
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
  • 批准号:
    DP240100186
  • 财政年份:
    2024
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Discovery Projects
Parental Social Class and Children's Educational Outcomes: A Longitudinal Analysis of the Millennium Cohort Study and Administrative Data
父母社会阶层与儿童教育成果:千年队列研究和行政数据的纵向分析
  • 批准号:
    ES/X012085/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Research Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Class Struggle in Ancient Greek Democracy
古希腊民主中的阶级斗争
  • 批准号:
    EP/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Research Grant
Class-Balanced Contrastive Learning for Multimodal Recognition
多模态识别的类平衡对比学习
  • 批准号:
    24K20831
  • 财政年份:
    2024
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Indication selection, patient stratification, and IND preparation for STX-002: the first-in-class LRG1 inhibitor for treatment of chronic kidney disease and immunotherapy-resistant tumours.
STX-002的适应症选择、患者分层和IND准备:用于治疗慢性肾病和免疫治疗耐药肿瘤的一流LRG1抑制剂。
  • 批准号:
    10092585
  • 财政年份:
    2024
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Collaborative R&D
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
  • 批准号:
    2339110
  • 财政年份:
    2024
  • 资助金额:
    $ 36.83万
  • 项目类别:
    Continuing Grant
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 36.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了