BioComp: Efficient Modeling and Analysis of Excitable Cell Networks using Hybrid Automata
BioComp:使用混合自动机对可兴奋细胞网络进行有效建模和分析
基本信息
- 批准号:0523863
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Systems biology is an emerging multidisciplinary field whose goal is to provide a systems-level understanding of biological systems by uncovering their structure, dynamics and control methods.While many exciting and profound advances have been made in investigating robustness, networkstructures and dynamics, and application to drug discovery, the field is still in its infancy.An important open problem in systems biology is finding appropriate computational models that scalewell for both the simulation and formal analysis of biological processes. Currently, the majority of thesemodels are given in terms of large and complex sets of nonlinear differential equations, describing in painfuldetail the underlying biological phenomena. Although an invaluable asset for integrating genomics andproteomics data to reveal local interactions, such models are often not amenable to formal analysis andrender simulation at the organ or even the cell level impractical.This proposal seeks to develop a hybrid-automata (HA) approach to modeling and analyzing complex biological systems. Excitable cell networks (heart cells in particular) will be used as an archetype of a complex biological system. Standard modeling methods capture the behavior of such cells using reaction-diffusion PDE systems, with the Hodgkin-Huxley (HH) formalism describing ion channel gating and currents. Initial results indicate that HA models, combining discrete and continuous processes, are able to successfully capture the morphology of the excitation event (action potential) of different cell types, including cardiac cells. They can also reproduce typical excitable cell characteristics, such as refractoriness (period of non-responsiveness to external stimulation) and restitution (adaptation to pacing rates). Multicellular ensembles of HA elements are used to simulate excitation wave propagation, including complex spiral waves underlying pathological conditions in the heart. The resulting simulation framework exhibits significantly improved computational efficiency, and opens the possibility to formal analysis based on HA theory.
系统生物学是一个新兴的多学科领域,其目标是通过揭示生物系统的结构、动力学和控制方法,提供对生物系统的系统级理解。虽然在研究稳健性、网络结构和动力学以及药物发现的应用方面取得了许多令人兴奋和深刻的进展,但该领域仍处于起步阶段。在系统生物学中,一个重要的开放性问题是寻找合适的计算模型,这些模型可以很好地模拟和形式化分析生物过程。目前,大多数这些模型都是根据大型和复杂的非线性微分方程集给出的,以痛苦的细节描述潜在的生物现象。尽管整合基因组学和蛋白质组学数据以揭示局部相互作用是一项宝贵的资产,但这些模型通常不适合正式分析,并且在器官甚至细胞水平上进行模拟不切实际。本提案旨在发展一种混合自动机(HA)方法来建模和分析复杂的生物系统。可兴奋细胞网络(特别是心脏细胞)将被用作复杂生物系统的原型。标准的建模方法使用反应扩散PDE系统捕捉这些细胞的行为,并用霍奇金-赫胥黎(HH)形式描述离子通道门控和电流。初步结果表明,结合离散和连续过程的HA模型能够成功捕获包括心肌细胞在内的不同细胞类型的兴奋事件(动作电位)的形态。它们还能重现典型的可兴奋细胞特征,如难治性(对外部刺激无反应的时期)和恢复性(对起搏速率的适应)。HA元素的多细胞集合用于模拟激发波的传播,包括心脏病理条件下的复杂螺旋波。由此产生的仿真框架显示出显着提高的计算效率,并为基于HA理论的形式化分析提供了可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emilia Entcheva其他文献
PO-05-113 OPTOGENETIC PACING OF HUMAN IPSC-CM CONSTRUCTS AFTER QUICK INTEGRATION USING MASS-PRODUCED, OPTICALLY CONTROLLABLE CELL SPHEROIDS
使用大规模生产的、可光控的细胞球状体快速整合后,对人类诱导多能干细胞衍生心肌细胞(IPSC-CM)构建体进行光遗传起搏的方案(PO-05-113)
- DOI:
10.1016/j.hrthm.2025.03.1511 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.700
- 作者:
Morgan Pettebone;Christianne Chua;Emilia Entcheva - 通讯作者:
Emilia Entcheva
Comparison of efficacy and functional consequences of siRNA and CRISPRi gene modulation with different effector domains in post-differentiated human iPSC-CMs
- DOI:
10.1016/j.bpj.2022.11.1463 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Julie Han;Yuli W. Heinson;Emilia Entcheva - 通讯作者:
Emilia Entcheva
PO-05-116 USING A HALBACH ARRAY AND MAGNETIC NANOPARTICLES TO CONTROL THE SPEED OF ELECTROMECHANICAL WAVES IN IPSC-CARDIOMYOCYTE SYNCYTIA
PO-05-116:利用哈尔巴赫阵列和磁性纳米粒子来控制 IPSC-心肌细胞合胞体中电机械波的速度
- DOI:
10.1016/j.hrthm.2025.03.1514 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.700
- 作者:
Maria Pozo;Yuli W. Heinson;Christianne Chua;Emilia Entcheva - 通讯作者:
Emilia Entcheva
Quantifying Hypoxia in Human iPS-Cardiomyocytes Under Optogenetic Pacing
- DOI:
10.1016/j.bpj.2019.11.3112 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Wei Liu;Weizhen Li;Julie Han;Emilia Entcheva - 通讯作者:
Emilia Entcheva
A Pipeline for High-Throughput Assessment of Electrophysiology and Protein Quantification in Small Samples of iPS-CM
- DOI:
10.1016/j.bpj.2019.11.957 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Weizhen Li;Emilia Entcheva - 通讯作者:
Emilia Entcheva
Emilia Entcheva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emilia Entcheva', 18)}}的其他基金
EFRI CEE: Human cardiac opto-epigenetics with HDAC inhibitors
EFRI CEE:HDAC 抑制剂的人类心脏光表观遗传学
- 批准号:
1830941 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
PFI-TT: Automated Platform for Drug Testing in Human Heart Cells Using Light
PFI-TT:利用光对人类心脏细胞进行药物测试的自动化平台
- 批准号:
1827535 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Light-enabled gene control for cardiac applications
用于心脏应用的光基因控制
- 批准号:
1705645 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
UNS: All-Optical Interrogation System for Cardiac Dynamics
UNS:心脏动力学全光学询问系统
- 批准号:
1623068 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
UNS: All-Optical Interrogation System for Cardiac Dynamics
UNS:心脏动力学全光学询问系统
- 批准号:
1511353 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Bioelectricity and Cell Signaling in a Microstructured Hybrid Model of Cardiac Tissue
心脏组织微结构混合模型中的生物电和细胞信号传导
- 批准号:
0503336 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
- 批准号:
24K16962 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: An Integrated Approach to Modeling, Decision-Making and Control for Energy Efficient Manufacturing
协作研究:节能制造建模、决策和控制的综合方法
- 批准号:
2243930 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: An Integrated Approach to Modeling, Decision-Making and Control for Energy Efficient Manufacturing
协作研究:节能制造建模、决策和控制的综合方法
- 批准号:
2243931 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Goal-Oriented Variable Transformations for Efficient Reduced-Order and Data-Driven Modeling
职业:面向目标的变量转换,用于高效的降阶和数据驱动建模
- 批准号:
2144023 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
DGECR-2022-00026 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
RGPIN-2022-04639 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Efficient estimation in a novel hybrid model combining deep learning and joint modeling of longitudinal and time-to-event analysis for multimodal health data
结合深度学习和多模态健康数据纵向和事件时间分析联合建模的新型混合模型的有效估计
- 批准号:
559863-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
BRITE Pivot: Enabling Efficient Fuel Cell Control Using Data-Driven Modeling
BRITE Pivot:使用数据驱动建模实现高效的燃料电池控制
- 批准号:
2135735 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Practical, Efficient and Scalable Modeling, Verification and Validation of Safety-Critical Cyber-Physical Systems
安全关键网络物理系统的实用、高效和可扩展的建模、验证和确认
- 批准号:
RGPIN-2020-06751 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Efficient estimation in a novel hybrid model combining deep learning and joint modeling of longitudinal and time-to-event analysis for multimodal health data
结合深度学习和多模态健康数据纵向和事件时间分析联合建模的新型混合模型的有效估计
- 批准号:
559863-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




