Complex structured "electron-poor" framework semiconductors with potential for thermoeletric application
具有热电应用潜力的复杂结构“贫电子”框架半导体
基本信息
- 批准号:172434187
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Thermoelectric devices cleanly convert heat into electricity and play an important role in satisfying the future global demand for efficient energy management. However, there exists a significant barrier to improving thermoelectric devices and that is the thermoelectric materials themselves. The most promising candidate materials are (heavily doped) narrow-gap semiconductors with low thermal conductivity. While crystal chemical mechanisms have been identified for reducing the thermal conductivity, a rationale selection of compositions and structures leading to bulk narrow-gap semiconductors is not well established. We present an international and interdisciplinary research program aimed at advancing thermoelectric materials research to uncover promising materials and provide new scientific understanding of materials that border/overlap metals and semiconductors. Taking the state-of-the-art thermoelectric Zn4Sb3 as a starting point, we conceptually integrate this material into a larger class of chemical compounds – electron poor framework semiconductors (EPFSs) – which includes elemental boron at one extreme. EPFS materials, made from metal and semimetal atoms, form a common, weakly polar framework containing multi-center bonded structural entities. The localized multi-center bonding feature is thought to be the key to structurally complex semiconductors. Binary and ternary EPFS materials that have so far been identified and characterized show promising thermoelectric properties; especially remarkable is their low thermal conductivity. Through a combination of chemical synthesis, structure analysis, computational modeling, and physical property measurements we explore systematically the compositional and structural potential of EPFS materials, and analyze their bonding properties and the mechanisms behind their peculiar, but desirable, low thermal conductivity. The effort will be carried out as collaborative activity among three institutions, Arizona State University (ASU, USA), Augsburg University (Germany), and Technical University Munich (Germany) assembling a research group with faculty, staff and students from Chemistry and Physics departments.Intellectual merit of the proposed activity: The major intellectual merit of the proposed activity will be the prediction, preparation and characterization of new narrow gap semiconductors with desirable thermoelectric properties. Additionally, new and conclusive insights into the intricate structure and bonding mechanisms of chemical systems that border/overlap metals and semiconductors – including boron-based refractory semiconductors – will be achieved. Our research will yield a significantly improved understanding of the microscopic mechanisms fundamental to thermoelectric properties, especially lattice thermal conductivity. This will be used to formulate principles to be used in the rational design of outstanding thermoelectric materials. Through the international collaboration, the experimental and theoretical aspects of the proposed research project will be closely integrated. This is paramount for unveiling the decisive structure-property correlations behind high thermoelectric performance. Unique instrumentation at the German high flux neutron source FRM-II (Munich) will become accessible to the project.Broader impacts resulting from the proposed activity: Energy technology has become one of the most demanding and challenging issues of society. The project described here contributes to energy technology through fundamental research related to optimization of thermoelectric energy conversion. In particular, it exploits the potential of intermetallic compounds to combine structural complexity with a narrow electronic band gap. Intermetallic compounds are a large class of inorganic solids, with a range of distinct physical and chemical properties. This project advances the understanding of bonding and structure-property correlations in complex intermetallics, laying the groundwork for opening up this class of compounds as useful materials also for other areas of energy technology. To accelerate the effort, a workshop assembling international expertise on chemical bonding in intermetallic compounds will be organized. The increasing societal impact of energy technology is further addressed by disseminating aspects of the proposed research to K-12 students (by developing lucid but appropriately targeted class room demonstrations and providing support to teachers) and professional science master’s (PSM) students (by incorporating the topic in the nanoscience seminar course to these emerging technology leaders in` Arizona). The international/interdisciplinary character of the proposed research offers unique opportunities for student training. An international exchange program has been designed to integrating research (through extended research visits to collaborating laboratories and facilities) and education (through accessing the renowned international masters program of the German partners). The aim is to educate graduate students on the complexity of today’s materials research and immerse them in interdisciplinary and international research.
热电设备将热能清洁地转化为电能,在满足未来全球对高效能源管理的需求方面发挥着重要作用。然而,改进热电器件存在一个重大障碍,那就是热电材料本身。最有希望的候选材料是(重掺杂)低导热系数的窄禁带半导体。虽然已经确定了降低热导率的晶体化学机制,但导致大块窄禁带半导体的成分和结构选择的理论基础还没有很好地建立起来。我们提出了一个国际和跨学科的研究计划,旨在促进热电材料的研究,以发现有前途的材料,并提供对金属和半导体边界/重叠的材料的新的科学理解。以最先进的热电材料Zn4Sb3为起点,我们从概念上将这种材料集成到一个更大的化合物类别-电子贫化框架半导体(EPFSS)-其中一个极端包括元素硼。EPFS材料由金属和半金属原子制成,形成一个包含多中心键合结构实体的常见的弱极性骨架。局域多中心键合特性被认为是结构复杂的半导体的关键。到目前为止,已被鉴定和表征的二元和三元EPF材料显示出良好的热电性能,尤其是它们的低导热系数。通过化学合成、结构分析、计算模拟和物理性能测量相结合的方法,我们系统地探索了EPFS材料的组成和结构潜力,并分析了它们的成键性能和其独特但令人满意的低导热系数背后的机理。这项工作将作为亚利桑那州立大学(美国亚利桑那州立大学)、奥格斯堡大学(德国)和慕尼黑工业大学(德国)三个机构之间的合作活动,由来自化学和物理系的教职员工和学生组成一个研究小组。拟议活动的智力价值:拟议活动的主要智力价值将是预测、制备和表征具有理想热电性能的新型窄禁带半导体。此外,还将对金属和半导体--包括以硼为基础的耐火半导体--的边界/重叠的化学体系的复杂结构和键合机制有新的和结论性的见解。我们的研究将大大提高对热电性质,特别是晶格热导率的微观机制的理解。这将被用来制定用于优秀热电材料的合理设计的原则。通过国际合作,将拟议研究项目的实验和理论方面紧密结合在一起。这对于揭示高热电性能背后决定性的结构-性能相关性至关重要。德国高通量中子源FRM-II(慕尼黑)的独特仪器将可供该项目使用。拟议活动产生的广泛影响:能源技术已成为社会最苛刻和最具挑战性的问题之一。本文介绍的项目通过与热电转换优化相关的基础研究,为能源技术做出贡献。特别是,它利用金属间化合物的潜力,将结构的复杂性与窄的电子带隙结合在一起。金属间化合物是一大类无机固体,具有一系列不同的物理和化学性质。该项目促进了对复杂金属间化合物中成键和结构-性能相关性的理解,为将这类化合物作为有用材料开发出来奠定了基础,也为能源技术的其他领域奠定了基础。为加快这一努力,将组织一次讲习班,汇集金属间化合物化学结合方面的国际专门知识。能源技术日益增加的社会影响通过向K-12学生(通过开发清晰但适当有针对性的课堂演示并向教师提供支持)和专业科学硕士(通过将该主题纳入纳米科学研讨会课程以向这些亚利桑那州的新兴技术领导者)传播拟议研究的各个方面来进一步解决。拟议研究的国际性/跨学科特点为学生培训提供了独特的机会。已经设计了一个国际交流计划,以整合研究(通过对合作实验室和设施的长期研究访问)和教育(通过访问德国合作伙伴的著名国际硕士计划)。其目的是教育研究生了解当今材料研究的复杂性,并让他们沉浸在跨学科和国际研究中。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the nature of superconductivity in the anisotropic dichalcogenide NbSe2{CoCp2}x
- DOI:10.1088/0953-8984/27/15/155701
- 发表时间:2015-03
- 期刊:
- 影响因子:0
- 作者:E. Scheidt;M. Herzinger;Andreas Fischer;Dominik Schmitz;J. Reiners;Franz Mayr;F. Loder;M. Baenitz;Wolfgang Scherer
- 通讯作者:E. Scheidt;M. Herzinger;Andreas Fischer;Dominik Schmitz;J. Reiners;Franz Mayr;F. Loder;M. Baenitz;Wolfgang Scherer
Synthesis, structure, and properties of the electron-poor II-V semiconductor ZnAs.
贫电子II-V族半导体ZnAs的合成、结构和性能
- DOI:10.1021/ic501308q
- 发表时间:2014
- 期刊:
- 影响因子:4.6
- 作者:A. Fischer;D. Eklöf;D. E. Benson;E.-W. Scheidt;W. Scherer;U. Häussermann
- 通讯作者:U. Häussermann
Structural principles and thermoelectric properties of polytypic group 14 clathrate-II frameworks.
多型14族笼形II骨架的结构原理和热电性能
- DOI:10.1002/cphc.201300133
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:A. Karttunen;T. F. Fässler
- 通讯作者:T. F. Fässler
Synthesis of large single crystals and thermoelectrical properties of the type-I clathrate K8Zn4Sn42
I型包合物K8Zn4Sn42大单晶的合成及热电性能
- DOI:10.1002/zaac.201300383
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:V. Baran;A. Fischer;W. Scherer;T. F. Fässler
- 通讯作者:T. F. Fässler
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Thomas F. Fässler其他文献
Professor Dr. Thomas F. Fässler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Thomas F. Fässler', 18)}}的其他基金
Synthesis of Lithium Silicides, Germanides and Stannides with Ion Exchange Materials
用离子交换材料合成硅化锂、锗化物和锡化物
- 批准号:
266046744 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Accurate charge density determination in Zintl phases
准确测定 Zintl 相中的电荷密度
- 批准号:
132218172 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Synthese intermetalloider Cluster durch die Umsetzung der Zintl-Ionen [Sn9]4- und [Pb9]4- mit Kupfer-, Silber- und Goldverbindungen
通过 Zintl 离子 [Sn9]4- 和 [Pb9]4- 与铜、银和金化合物反应合成金属间化合物簇
- 批准号:
73500604 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Reaktionen homoatomarer Zintl-Ionen der Gruppe 14 in Lösung
第 14 族同原子 Zintl 离子在溶液中的反应
- 批准号:
5277036 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Priority Programmes
Polare Legierungen als Mehrkomponenten-Katalysatoren
作为多组分催化剂的极性合金
- 批准号:
5354556 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
Reaktionen homoatomarer Zintl-Ionen der Gruppe 14 in Lösung
第 14 族同原子 Zintl 离子在溶液中的反应
- 批准号:
5277031 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
Double salts with a multifunctional character made from Zintl phases and oxo- as well as halogeno-metalates
由 Zintl 相和氧代以及卤代金属盐制成的具有多功能特性的复盐
- 批准号:
508247931 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAREER: Elucidating the Formation and Evolution of Metastable Phases in Fluorite-Structured Ferroelectrics using Advanced Electron Microscopy
职业:使用先进电子显微镜阐明萤石结构铁电体中亚稳相的形成和演化
- 批准号:
2338558 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
- 批准号:
10570189 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
- 批准号:
10467534 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Experimental mapping of electron densities in nano-structured materials.
纳米结构材料中电子密度的实验测绘。
- 批准号:
DP210100308 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Projects
Investigating Quantum Coherence using Structured Electron Interferometry
使用结构电子干涉测量法研究量子相干性
- 批准号:
2012191 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Improvement of Membrane Protein Structure Determination Using Paramagnetic Restraints
使用顺磁约束改进膜蛋白结构测定
- 批准号:
9911819 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Identification and structural characterization of the function of isoforms ASCc and ASCd in inflammasome regulation
亚型 ASCc 和 ASCd 在炎症小体调节中的功能鉴定和结构表征
- 批准号:
10062397 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Structural determination of the IdeS-IgG complex to guide therapeutic development of IdeS
IdeS-IgG 复合物的结构测定以指导 IdeS 治疗开发
- 批准号:
10296713 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Methods for serially multiplexed labeling in EM reconstructions of brain tissue
脑组织电镜重建中连续多重标记的方法
- 批准号:
9892040 - 财政年份:2019
- 资助金额:
-- - 项目类别: