Ergodic-Theoretic Properties of Actions of Discrete Groups
离散群作用的遍历理论性质
基本信息
- 批准号:0527082
- 负责人:
- 金额:$ 1.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, the PI will study the actions of Lie groups and their discretesubgroups from ergodic-theoretic point of view. Note that only few resultsabout statistical properties of orbits of large nonamenable groups are known.A part of this project addresses the question about the distribution oforbits of lattices in Lie groups acting on homogeneous spaces. The methods,which utilize the equidistribution properties of unipotent flows (due to Ratnerand others), apply to a large variety of natural actions of lattices. Sincethe methods based on the Ratner theory do not provide effective estimateson the rate of convergence, it is intended to develop a different approachthat gives effective error terms. The expected results of the proposal haveseveral potential applications to number theory. In particular, we plan toinvestigate distribution of values at integer points of systems consistingof linear and quadratic forms. Another direction of research is the studyof mixing properties of large groups of automorphisms of nilmanifolds.The main objective of this project is to investigate distribution of orbitsof large discrete and continuous groups of motions on various spaces.Questions about asymptotic distribution of families of mathematical objectsappear in many different areas of mathematics: ergodic theory, number theory(e.g., distribution of prime numbers), geometry (e.g., distribution of closedgeodesics on a compact surface), PDE (e.g., distribution of eigenvalues of theLaplace operator), and others. When a family of the objects exhibits verycomplicated behavior, statistical properties of this family provide importantinsights into its structure. In this project, we use methods of the theory ofdynamical systems to derive results in number theory on the distribution ofinteger points. Our study uncovers promising interplay between ergodic theoryand number theory simultaneously enriching both of these areas of research.This subject and its connections with many other branches of mathematicsprovide an excellent introduction for graduate as well as undergraduatestudents to active research and can be used for presentations accessible toaudiences of different levels.
在这个项目中,PI将从遍历理论的角度研究李群及其离散子群的行为。请注意,关于大型不可命名群的轨道统计特性的结果很少。该项目的一部分解决了作用于齐次空间的李群中晶格轨道的分布问题。这些方法利用单能流的等分布性质(由拉特纳等人提出),适用于晶格的多种自然作用。由于基于拉特纳理论的方法不能提供对收敛速度的有效估计,因此旨在开发一种给出有效误差项的不同方法。该提案的预期结果对数论有几个潜在的应用。特别是,我们计划研究由线性和二次形式组成的系统整数点处的值分布。另一个研究方向是研究尼尔曼流形大群自同构的混合性质。该项目的主要目标是研究各种空间上大的离散和连续运动群的轨道分布。关于数学对象族的渐近分布的问题出现在数学的许多不同领域:遍历理论、数论(例如素数的分布)、几何(例如素数的分布) 紧凑表面上的闭合测地线)、偏微分方程(例如,拉普拉斯算子的特征值分布)等。当一个对象族表现出非常复杂的行为时,该族的统计特性为其结构提供了重要的见解。在这个项目中,我们使用动力系统理论的方法来推导出整数点分布的数论结果。我们的研究揭示了遍历理论和数论之间有希望的相互作用,同时丰富了这两个研究领域。该主题及其与许多其他数学分支的联系为研究生和本科生提供了积极研究的精彩介绍,并且可用于向不同水平的观众进行演示。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Gorodnik其他文献
Higher Order Correlations for Group Actions
群体行动的高阶相关性
- DOI:
10.1007/978-981-15-0683-3_3 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Alexander Gorodnik - 通讯作者:
Alexander Gorodnik
The space of homogeneous probability measures on $$\overline{\Gamma \backslash X}^S_\mathrm{max}$$ is compact
在\(\overline{\Gamma \backslash X}^S_\mathrm{max}\)上齐次概率测度的空间是紧的
- DOI:
10.1007/s00208-022-02412-w - 发表时间:
2022-06-08 - 期刊:
- 影响因子:1.400
- 作者:
Christopher Daw;Alexander Gorodnik;Emmanuel Ullmo - 通讯作者:
Emmanuel Ullmo
Central limit theorems for generic lattice point counting
- DOI:
10.1007/s00029-022-00815-w - 发表时间:
2022-12-08 - 期刊:
- 影响因子:1.200
- 作者:
Michael Björklund;Alexander Gorodnik - 通讯作者:
Alexander Gorodnik
On an oppenheim-type conjecture for systems of quadratic forms
- DOI:
10.1007/bf02786629 - 发表时间:
2004-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Alexander Gorodnik - 通讯作者:
Alexander Gorodnik
Alexander Gorodnik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Gorodnik', 18)}}的其他基金
Dynamics of Large Group Actions, Rigidity, and Diophantine geometry
大群体作用动力学、刚性和丢番图几何
- 批准号:
EP/H000097/1 - 财政年份:2010
- 资助金额:
$ 1.77万 - 项目类别:
Research Grant
Ergodic theory of large groups, counting, and equidistribution
大群遍历理论、计数和均匀分布
- 批准号:
0654413 - 财政年份:2007
- 资助金额:
$ 1.77万 - 项目类别:
Standard Grant
Ergodic-Theoretic Properties of Actions of Discrete Groups
离散群作用的遍历理论性质
- 批准号:
0400631 - 财政年份:2004
- 资助金额:
$ 1.77万 - 项目类别:
Standard Grant
相似海外基金
Measure theoretic properties of phase field models for surface evolution equations
测量表面演化方程相场模型的理论特性
- 批准号:
23K03180 - 财政年份:2023
- 资助金额:
$ 1.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model-theoretic tree properties and their applications
模型理论树的性质及其应用
- 批准号:
2246992 - 财政年份:2023
- 资助金额:
$ 1.77万 - 项目类别:
Standard Grant
LEAPS-MPS: Number-Theoretic and Combinatorial Properties of Increasing Sequences of Positive Integers
LEAPS-MPS:正整数递增序列的数论和组合性质
- 批准号:
2316986 - 财政年份:2023
- 资助金额:
$ 1.77万 - 项目类别:
Standard Grant
The study on ring theoretic properties and Groebner basis of Specht ideals
Specht理想的环理论性质及Groebner基础研究
- 批准号:
22K03258 - 财政年份:2022
- 资助金额:
$ 1.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ring-theoretic properties of augmented Iwasawa algebras
增广岩泽代数的环理论性质
- 批准号:
2272759 - 财政年份:2019
- 资助金额:
$ 1.77万 - 项目类别:
Studentship
Emergent properties in thermodynamics from an algorithmic information theoretic perspective
从算法信息论的角度看热力学的涌现性质
- 批准号:
533423-2018 - 财政年份:2018
- 资助金额:
$ 1.77万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Research on number theoretic properties of zeta functions in several variables
多变量zeta函数的数论性质研究
- 批准号:
15K04788 - 财政年份:2015
- 资助金额:
$ 1.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Distributed dissipativity and graph theoretic properties in distributed economic MPC
分布式经济 MPC 中的分布式耗散性和图论特性
- 批准号:
244600449 - 财政年份:2013
- 资助金额:
$ 1.77万 - 项目类别:
Research Grants
Deepening of the research in set-theoretic topology with forcing and large cardinal properties
具有强迫和大基数性质的集合论拓扑研究的深化
- 批准号:
25400207 - 财政年份:2013
- 资助金额:
$ 1.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relationship between the geometric properties of hyperbolic algebraic curves and the group-theoretic properties of the arithmetic fundamental groups of curves
双曲代数曲线的几何性质与算术基本曲线群的群论性质之间的关系
- 批准号:
24540016 - 财政年份:2012
- 资助金额:
$ 1.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)