Ring-theoretic properties of augmented Iwasawa algebras

增广岩泽代数的环理论性质

基本信息

  • 批准号:
    2272759
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Let p be a prime number. The field of p-adic rationals Qp, and its ring of integers, the p-adic integers Zp, are rings that are significant in number theory, as a completion of the usual integers or rationals at p. Naturally matrix groups over these rings are also heavily studied, for example, the general linear group, special linear group, orthogonal group, symplectic group, as well as subgroups of such groups. These groups are called p-adic analytic groups. Attempting to understand the representation theory of these groups has ramifications in number theory and is connected to the far-reaching Langlands program.The p-adic analytic groups G above have a natural topology induced by the topology on Zp and Qp. It is important that representations of G respect this topological structure, and hence we must study a restricted subset of the representations of G. This means that the usual definition of the group ring k[G] is inappropriate in this context. Hence we must form a "completion" of the group ring, kG. Here, k is a finite field of characteristic p.There are two cases of G that we must consider: G compact and G non-compact. When G is compact, the ring kG is known as an Iwasawa algebra. This occurs when G is a group "defined over Zp", such as GLn(Zp). One of the most crucial properties that all Iwasawa algebras share is that of being Noetherian (all ideals are finitely generated). This is a basic ring-theoretic property, and an extremely large number of results on Noetherian rings are known. This contributes to making the study of Iwasawa algebras a rich and interesting field.The case when G is non-compact is arguably more important to consider - this occurs for example when G is a group defined over Qp, for example GLn(Qp). Such groups appear frequently in number theory, and their representation theory is a crucial part of the Langlands program. Unfortunately, in the case when G is non-compact, the ring kG, called an augmented Iwasawa algebra, is in almost all cases not Noetherian. This presents significant difficulties in generalising results on Iwasawa algebras to results on augmented Iwasawa algebras, simply because so many more tools can be brought to bear once it is known a ring is Noetherian. However, not all is lost. There is a natural generalisation of the property of Noetherianity, known as coherence. A ring R is coherent if every finitely-generated ideal is finitely-presented (as an R-module). Any Noetherian ring will be coherent, but the converse is not true, for example if R is a polynomial ring in an infinite number of variables, it will be coherent but not Noetherian. The notion of coherence is useful because, as a general philosophy, statements about finitely-generated modules over Noetherian rings can often be generalised to statements about finitely-presented modules over coherent rings. Moreover, the definition of coherence can be extended to modules over a ring. Coherent modules have properties that allow techniques and ideas from algebraic geometry to be used in their study.Thus a natural question arises: are all augmented Iwasawa algebras coherent? It can be shown that certainly some small examples are. If not, what conditions on G give coherence and non-coherence of kG? This project will address these questions and hope to provide an answer. The project also aims to determine other ring-theoretic properties and invariants of augmented Iwasawa algebras, for example, the centre and the Hochschild (co)homology. Results from this project have the potential to impact the modular representation theory of p-adic analytic groups, for example as seen in Matthew Emerton's Ordinary Parts of Admissible Representations of p-adic Reductive Groups I & II, and Jack Shotton's recent preprint On the Category of Finitely Presented Smooth Mod p Representations of GL2(F). This project falls within the EPSRC Algebra research area
设p为素数。p-adic有理数域Qp和它的整数环,p-adic整数Zp,是数论中重要的环,作为通常的整数或有理数在p处的完备化。自然,这些环上的矩阵群也被大量研究,例如,一般线性群,特殊线性群,正交群,辛群,以及这些群的子群。这些群被称为p-adic解析群。试图理解这些群的表示理论在数论中有分支,并且与影响深远的朗兰兹计划有关。上面的p-adic解析群G具有由Zp和Qp上的拓扑导出的自然拓扑。重要的是,G的表示尊重这种拓扑结构,因此我们必须研究G的表示的一个限制子集。这意味着群环k[G]的通常定义在此上下文中是不合适的。因此,我们必须形成群环kG的“完备化”。这里,k是特征为p的有限域。我们必须考虑G的两种情况:G紧和G非紧。当G是紧的时,环kG称为岩泽代数。当G是一个“定义在Zp上”的群时,例如GLn(Zp),就会发生这种情况。所有岩泽代数共有的最重要的性质之一是诺特(所有理想都是等距生成的)。这是一个基本的环理论的性质,和一个非常大量的结果诺特环是已知的。这使得岩泽代数的研究成为一个丰富而有趣的领域。当G是非紧的情况下,可以说是更重要的考虑-这发生在例如当G是一个群定义在Qp,例如GLn(Qp)。这类群在数论中经常出现,它们的表示论是朗兰兹纲领的重要组成部分。不幸的是,在G是非紧的情况下,称为增广岩泽代数的环kG几乎在所有情况下都不是诺特环。这提出了显着的困难,推广结果岩泽代数的结果,增广岩泽代数,只是因为这么多的工具可以承担一旦它是已知的环是诺特。然而,并非一切都失去了。有一个自然概括的属性Noetherianity,被称为连贯性。环R是凝聚的,如果每个有限生成理想是有限表现的(作为R-模)。任何诺特环都是相干的,但匡威则不成立,例如如果R是无穷多个变量的多项式环,它将是相干的但不是诺特环。相干的概念是有用的,因为作为一般的哲学,关于诺特环上有限生成模的陈述通常可以推广到相干环上有限表现模的陈述。此外,相干性的定义可以扩展到环上的模。凝聚模的性质使得代数几何中的技巧和思想可以用于它们的研究。因此一个自然的问题出现了:所有的增广岩泽代数都是凝聚的吗?可以证明,确实有一些小的例子。如果不是,在G上什么条件给出kG的相干和非相干?这个项目将解决这些问题,并希望提供一个答案。该项目还旨在确定增广岩泽代数的其他环论性质和不变量,例如中心和Hochschild(上)同调。这个项目的结果有可能影响p-adic解析群的模表示理论,例如在Matthew Emerton的Ordinary Parts of Admissible Representations of p-adic Reductive Groups I & II,以及Jack肖顿最近的预印本On the Category of Approximately Presented Smooth Mod p Representations of GL 2(F)中可以看到。这个项目属于EPSRC代数研究领域的福尔斯

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Measure theoretic properties of phase field models for surface evolution equations
测量表面演化方程相场模型的理论特性
  • 批准号:
    23K03180
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Model-theoretic tree properties and their applications
模型理论树的性质及其应用
  • 批准号:
    2246992
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
LEAPS-MPS: Number-Theoretic and Combinatorial Properties of Increasing Sequences of Positive Integers
LEAPS-MPS:正整数递增序列的数论和组合性质
  • 批准号:
    2316986
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The study on ring theoretic properties and Groebner basis of Specht ideals
Specht理想的环理论性质及Groebner基础研究
  • 批准号:
    22K03258
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Emergent properties in thermodynamics from an algorithmic information theoretic perspective
从算法信息论的角度看热力学的涌现性质
  • 批准号:
    533423-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Research on number theoretic properties of zeta functions in several variables
多变量zeta函数的数论性质研究
  • 批准号:
    15K04788
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Distributed dissipativity and graph theoretic properties in distributed economic MPC
分布式经济 MPC 中的分布式耗散性和图论特性
  • 批准号:
    244600449
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Deepening of the research in set-theoretic topology with forcing and large cardinal properties
具有强迫和大基数性质的集合论拓扑研究的深化
  • 批准号:
    25400207
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Relationship between the geometric properties of hyperbolic algebraic curves and the group-theoretic properties of the arithmetic fundamental groups of curves
双曲代数曲线的几何性质与算术基本曲线群的群论性质之间的关系
  • 批准号:
    24540016
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Cesaro-type integral operators via function-theoretic properties of symbol functions
通过符号函数的函数论性质分析塞萨罗型积分算子
  • 批准号:
    23740100
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了