Dynamical Data-based Modeling of the Magnetospheric Magnetic Field
基于动态数据的磁层磁场建模
基本信息
- 批准号:0539038
- 负责人:
- 金额:$ 26.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-01-01 至 2008-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many research topics concerning the Earth's magnetosphere depend on models of the magnetic field. The existing empirical models are global in space, time, and in the amplitude of field variations, and they are fitted to observations using a limited set of custom-tailored basis functions representing each magnetospheric current system. Although the current models have proven to be very useful to the space science community they have a number of limitations. In particular, they do not have the spatial resolution that would be desired and they do not take into account the time history of the variations. This project will combine the empirical modeling techniques that have been used in the past with modern methods of spatial data interpolation and nonlinear time-series analysis. This will advance the models of the geomagnetic field and make it possible to systematically increase their spatial resolution and to take into account the variable solar wind driving on the timescales involved in magnetic storms and substorms.The research will pursue three complementary lines. First, the project will explore the timescales of the response of the main magnetospheric field sources to solar wind density, speed, ram pressure and the interplanetary magnetic field (IMF) variations. The response functions will be parameterized using simple loading-unloading equations with respect to the solar-wind input. Second, a finite element technique will be implemented, in which the fields of individual current systems are expanded into a series of basis functions, taking into account geometrical constraints, imposed on a given current system via its specific boundary conditions. Combined with a progressive extension of the spacecraft database, this approach will improve the spatial resolution, maximize the information derived from observations, and minimize the number of a priori assumptions on the structure of the magnetosphere. The third line of the research will explore the possibility of replacing the global time and amplitude fitting with the local ones, using the dynamical system approach and modern techniques of the local fitting of data in phase space. This technique will be based on the concepts of time delay embedding, nearest neighbors, and conditional probability. An important technical improvement will be the parallelization of the existing and newly developed codes, providing a much faster update of the model using supercomputers. The proposed study will be based on the largest available amount of spacecraft data, including a significantly extended set of interplanetary and magnetospheric observations. The data set includes coverage of more than 50 major magnetic storms. The new generation of empirical geomagnetic field models, will enable space weather forecasting of the magnetic field and will promote our understanding and prediction of the coupling between the solar wind and the magnetosphere on timescales relevant to geospace disturbances. The new geomagnetic field models and the database will be made openly available to other researchers.
许多关于地球磁层的研究课题都依赖于磁场模型。现有的经验模型是全球性的空间,时间和磁场变化的幅度,他们适合使用一组有限的定制的基础功能,代表每个磁层电流系统的观测。虽然目前的模型已证明对空间科学界非常有用,但它们有一些局限性。特别地,它们不具有期望的空间分辨率,并且它们不考虑变化的时间历史。本项目将把过去使用的经验建模技术与空间数据插值和非线性时间序列分析的现代方法联合收割机结合起来。这将改进地磁场模型,有系统地提高其空间分辨率,并考虑到在磁暴和亚磁暴所涉及的时间尺度上太阳风驱动的变化。首先,该项目将探索主要磁层场源对太阳风密度、速度、冲压压力和行星际磁场变化的反应的时间尺度。响应函数将使用简单的加载-卸载方程相对于太阳风输入进行参数化。第二,将实施有限元技术,其中各个电流系统的领域被扩展成一系列的基函数,考虑到几何约束,施加在一个给定的电流系统通过其特定的边界条件。结合航天器数据库的逐步扩展,这一方法将提高空间分辨率,最大限度地利用从观测中获得的信息,并最大限度地减少关于磁层结构的先验假设。研究的第三条线将探索用局部时间和幅度拟合代替全局时间和幅度拟合的可能性,使用动力系统方法和相空间中数据的局部拟合的现代技术。该技术将基于时间延迟嵌入、最近邻和条件概率的概念。一个重要的技术改进将是现有和新开发代码的并行化,使用超级计算机提供更快的模型更新。拟议的研究将以现有的最大数量的航天器数据为基础,包括大量的行星际和磁层观测数据。该数据集包括50多个主要磁暴的覆盖范围。新一代的经验地磁场模型将能够对磁场进行空间气象预报,并将促进我们对太阳风和磁层之间在与地球空间扰动有关的时间尺度上的耦合的理解和预测。新的地磁场模型和数据库将向其他研究人员开放。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Sitnov其他文献
Mikhail Sitnov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Sitnov', 18)}}的其他基金
Reconnection Onset in Overstretched Magnetotail Current Sheets
过度拉伸磁尾电流片中的重联起始
- 批准号:
2411808 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
GEM: Multi-scale Empirical Geomagnetic Field Modeling
GEM:多尺度经验地磁场建模
- 批准号:
1702147 - 财政年份:2017
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
GEM: Dipolarization Fronts and Reconnection Onset in Realistic Models of the Magnetotail
GEM:磁尾现实模型中的偶极前沿和重联起始
- 批准号:
1403144 - 财政年份:2014
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
High-Resolution Empirical Reconstruction of the Geomagnetic Field as a Space Weather Research Tool
作为空间天气研究工具的地磁场高分辨率经验重建
- 批准号:
1157463 - 财政年份:2013
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
Modeling Unsteady Reconnection in the Magnetotail
磁尾不稳定重联建模
- 批准号:
0903890 - 财政年份:2009
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
NSWP: Data-based Forecasting of the Geomagnetic Field with High Resolution in Space
NSWP:基于数据的空间高分辨率地磁场预测
- 批准号:
0817333 - 财政年份:2008
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
Dynamical Data-based Modeling of the Magnetospheric Magnetic Field
基于动态数据的磁层磁场建模
- 批准号:
0809161 - 财政年份:2007
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
Modeling Collisionless Reconnection Onset and Thin Current Sheets in Earth's Magnetotail and Laboratory Plasmas
模拟地球磁尾和实验室等离子体中的无碰撞重联起始和薄电流片
- 批准号:
0317253 - 财政年份:2003
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
- 批准号:
24K07230 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FlexNIR-PD: A resource efficient UK-based production process for patented flexible Near Infrared Sensors for LIDAR, Facial recognition and high-speed data retrieval
FlexNIR-PD:基于英国的资源高效生产工艺,用于 LIDAR、面部识别和高速数据检索的专利柔性近红外传感器
- 批准号:
10098113 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Collaborative R&D
EcoTraceAI: A Novel AI-based Platform for data collection and validation for measuring the environmental impacts of the supply chain in the fashion industry.
EcoTraceAI:一个基于人工智能的新型平台,用于数据收集和验证,用于衡量时尚行业供应链的环境影响。
- 批准号:
10114149 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
SME Support
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
- 批准号:
DP240100300 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Discovery Projects
RII Track-4:@NSF: Surrogate-based Optimal Atmospheric Entry Guidance using High-fidelity Simulation Data
RII Track-4:@NSF:使用高保真模拟数据的基于替代的最佳大气进入指导
- 批准号:
2327379 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Machine learning-based prediction models for morbidity and mortality risk of cardiometabolic diseases in post-disaster residents by using the Fukushima longitudinal health data
利用福岛纵向健康数据基于机器学习的灾后居民心脏代谢疾病发病和死亡风险预测模型
- 批准号:
24K13482 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Robust Data Based Control and Estimation for Resilient DC Microgrids
职业:基于稳健数据的弹性直流微电网控制和估计
- 批准号:
2339434 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
A Process-Based Framework for Open Innovation with Social Media Data
基于流程的社交媒体数据开放式创新框架
- 批准号:
DP230102657 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Discovery Projects