NSWP: Data-based Forecasting of the Geomagnetic Field with High Resolution in Space

NSWP:基于数据的空间高分辨率地磁场预测

基本信息

  • 批准号:
    0817333
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-12-01 至 2011-11-30
  • 项目状态:
    已结题

项目摘要

The magnetic field is a fundamental parameter that governs the structure of the magnetosphere and its storm-time dynamics. Achieving its timely, accurate, and reliable forecasting is one of principal goals of the National Space Weather Program. It is especially important for the inner magnetosphere, where magnetic storms and radiation belt disturbances occur, and where the capabilities of the present-day first-principle models are most limited. In particular, the dynamics of the magnetic field is a key factor controlling the radial transport and acceleration of the radiation belts. A recently developed technique based on an extensible model for the field of equatorial currents that uses large sets of spacecraft data has been shown to dramatically improve the spatial resolution of the empirical picture of the magnetospheric magnetic field. Since the data accumulation, necessary for high resolution in space, may be too long and smear out important dynamical effects, a new nonlinear data-binning technique has been devised, where the spatial structure of each state of the magnetosphere is described by fitting the model to a local subset of data. It includes both the actual data obtained for the given state and data from other time intervals (e.g., similar phases of other magnetic storms), neighboring the present state in the space of global parameters, solar wind electric field, geomagnetic activity index Sym-H, and its time derivative. Initial results for magnetic storm structure and dynamics made with the model are consistent with in situ geosynchronous data, IMAGE spacecraft observations and the picture of field-aligned currents inferred from the Iridium constellation data, indicating that the technique offers a powerful new way to extract important new information on the storm-time currents and magnetic field from the past events. The goal of the project is to transform the present high-resolution model into a fully-fledged forecasting tool by using the interplanetary medium data as the only model input. Missing information on the state of the magnetosphere, available in the current model through the Sym-H index, will be provided in its forecasting version through a predicted Sym-H and through a more detailed description of the solar wind and IMF parameters and their time histories. The project will be done in three steps. First, the predicted Sym-H or Dst indices, already available from existing global forecasting models, will be used as a proxy of the actual Sym-H index. Second, a new data-fitting procedure will be elaborated, in which only solar wind and IMF data are used together with their time histories. Third, the new tool will be validated and optimized using in situ data and the already available high-resolution model based on the actual Sym-H index for the full range of storms. The proposed study uses the largest assembled database of in-situ space magnetic field data and concurrent interplanetary medium data ever compiled for empirical modeling studies, based on 11 years of GOES, IMP 8, Polar, Geotail, Cluster, ACE, and Wind spacecraft observations. When available, data from the new THEMIS mission will also be added to the data set. The final product of the study will be a set of space weather forecasting codes specifying the magnetospheric magnetic field with the resolution in space of a few Earth radii and the temporal resolution up to substorm time scales. To provide fast predictions the new codes will be parallelized and tested on local clusters and supercomputers.
磁场是控制磁层结构及其风暴时间动态的基本参数。实现及时、准确和可靠的预报是国家空间天气计划的主要目标之一。这对内磁层尤其重要,因为磁暴和辐射带扰动发生在那里,而目前的第一原理模型的能力也是最有限的。特别是,磁场的动力学是控制辐射带的径向传输和加速的关键因素。 最近开发的一种技术以赤道电流场的可扩展模型为基础,使用了大量航天器数据集,已证明这种技术大大提高了磁层磁场经验图的空间分辨率。由于空间高分辨率所需的数据积累可能太长,会掩盖重要的动力学效应,因此设计了一种新的非线性数据分箱技术,通过将模型拟合到局部数据子集来描述磁层每个状态的空间结构。它既包括为给定状态获得的实际数据,也包括来自其他时间间隔的数据(例如,其他磁暴的相似阶段),在全球参数、太阳风电场、地磁活动指数Sym-H及其时间导数的空间中与当前状态相邻。用该模型得到的磁暴结构和动力学的初步结果与现场地球同步数据、IMAGE航天器观测和从铱星座数据推断的场向电流图片一致,表明该技术提供了一种强有力的新方法,可以从过去的事件中提取关于磁暴时电流和磁场的重要新信息。该项目的目标是将行星际介质数据作为唯一的模型输入,将目前的高分辨率模型转变为成熟的预测工具。目前的模型通过Sym-H指数提供了关于磁层状态的缺失信息,而在其预测版本中,将通过预测的Sym-H以及通过对太阳风和国际货币基金组织参数及其时间历史的更详细描述提供这些信息。该项目将分三个步骤进行。首先,现有全球预测模型中已有的Sym-H或Dst指数预测值将被用作实际Sym-H指数的替代值。第二,将制定一个新的数据拟合程序,其中只有太阳风和IMF数据与它们的时间历史一起使用。第三,将利用现场数据和现有的高分辨率模型,根据实际的Sym-H指数,对整个风暴范围进行验证和优化。拟议的研究使用了最大的现场空间磁场数据和并行行星际介质数据的汇编数据库,这些数据是基于11年的GOES,IMP 8,Polar,Geotail,Cluster,ACE和Wind航天器观测而编制的。新的THEMIS使命的数据如果可以获得,也将加入数据集。这项研究的最后产品将是一套空间气象预报代码,具体说明磁层磁场,空间分辨率为几个地球半径,时间分辨率可达亚暴时间尺度。为了提供快速预测,新代码将在本地集群和超级计算机上进行并行化和测试。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikhail Sitnov其他文献

Mikhail Sitnov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mikhail Sitnov', 18)}}的其他基金

Reconnection Onset in Overstretched Magnetotail Current Sheets
过度拉伸磁尾电流片中的重联起始
  • 批准号:
    2411808
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Spontaneous Magnetotail Reconnection
自发磁尾重联
  • 批准号:
    1744269
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
GEM: Multi-scale Empirical Geomagnetic Field Modeling
GEM:多尺度经验地磁场建模
  • 批准号:
    1702147
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
GEM: Dipolarization Fronts and Reconnection Onset in Realistic Models of the Magnetotail
GEM:磁尾现实模型中的偶极前沿和重联起始
  • 批准号:
    1403144
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
High-Resolution Empirical Reconstruction of the Geomagnetic Field as a Space Weather Research Tool
作为空间天气研究工具的地磁场高分辨率经验重建
  • 批准号:
    1157463
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Modeling Unsteady Reconnection in the Magnetotail
磁尾不稳定重联建模
  • 批准号:
    0903890
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Dynamical Data-based Modeling of the Magnetospheric Magnetic Field
基于动态数据的磁层磁场建模
  • 批准号:
    0809161
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Dynamical Data-based Modeling of the Magnetospheric Magnetic Field
基于动态数据的磁层磁场建模
  • 批准号:
    0539038
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Modeling Collisionless Reconnection Onset and Thin Current Sheets in Earth's Magnetotail and Laboratory Plasmas
模拟地球磁尾和实验室等离子体中的无碰撞重联起始和薄电流片
  • 批准号:
    0317253
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
  • 批准号:
    24K07230
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FlexNIR-PD: A resource efficient UK-based production process for patented flexible Near Infrared Sensors for LIDAR, Facial recognition and high-speed data retrieval
FlexNIR-PD:基于英国的资源高效生产工艺,用于 LIDAR、面部识别和高速数据检索的专利柔性近红外传感器
  • 批准号:
    10098113
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
EcoTraceAI: A Novel AI-based Platform for data collection and validation for measuring the environmental impacts of the supply chain in the fashion industry.
EcoTraceAI:一个基于人工智能的新型平台,用于数据收集和验证,用于衡量时尚行业供应链的环境影响。
  • 批准号:
    10114149
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    SME Support
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
  • 批准号:
    DP240100300
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
RII Track-4:@NSF: Surrogate-based Optimal Atmospheric Entry Guidance using High-fidelity Simulation Data
RII Track-4:@NSF:使用高保真模拟数据的基于替代的最佳大气进入指导
  • 批准号:
    2327379
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Machine learning-based prediction models for morbidity and mortality risk of cardiometabolic diseases in post-disaster residents by using the Fukushima longitudinal health data
利用福岛纵向健康数据基于机器学习的灾后居民心脏代谢疾病发病和死亡风险预测模型
  • 批准号:
    24K13482
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Robust Data Based Control and Estimation for Resilient DC Microgrids
职业:基于稳健数据的弹性直流微电网控制和估计
  • 批准号:
    2339434
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
A Process-Based Framework for Open Innovation with Social Media Data
基于流程的社交媒体数据开放式创新框架
  • 批准号:
    DP230102657
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了