New Numerical Methods for Hamilton-Jacobi and Liouville Equations; Their Applications to Geometrical Optics, Wave Propagation and Travel-time Tomography

Hamilton-Jacobi 和 Liouville 方程的新数值方法;

基本信息

  • 批准号:
    0542174
  • 负责人:
  • 金额:
    $ 9.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-01 至 2007-11-30
  • 项目状态:
    已结题

项目摘要

The investigator develops novel and efficient numericalmethods for Hamilton-Jacobi and Liouville equations. These equations arisefrom seismic wave propagation, geometrical optics, optimal control,travel-time tomography, medical imaging, computer vision, and materialsciences. His previous works on computing viscosity solutions andmultivalued solutions of Hamilton-Jacobi equations lead him to developmore powerful and efficient numerical methodsfor solving these equations and incorporate these new methodsinto seismic modeling and inversion, as well as other possibleapplications. Problems under consideration include continued developmentof adaptive eikonal solvers for three-dimensional isotropic andanisotropic media; fast sweeping methods for stationary Hamilton-Jacobiequations on unstructured meshes; extending slowness matching methods togeneral Hamilton-Jacobi equations for computing multivalued solutions; andapplications of paraxial Liouville equations for geometrical optics, wavepropagation and transmission tomography.This investigation advances the state-of-the-art in geometrical optics,wave propagation and seismic travel-time tomography.These fields and applications are of great strategic value in the US oiland gas industry, in environmental sciences, and in medical imaging.Recently, for example, the price of gasoline soared dramatically in theUnited States. One way to reduce the cost of production of oil involveslowering drilling costs by advancing the seismic data processingtechniques that oil companies use to find good drilling sites. Theinvestigator's new methods expedite routine data processing, provide newtools for exploration geophysicists to use for ground-breakingapplications, and enable substantial cost savings in seismic explorations,as the speed and reliability of the underlying computational engine allows``rig-site'' adjustments to both seismic survey and drilling decisions.
研究者为Hamilton-Jacobi和Liouville方程开发了新颖有效的数值方法。这些方程来自地震波传播、几何光学、最优控制、旅行时断层扫描、医学成像、计算机视觉和材料科学。他以前在计算粘度解和Hamilton-Jacobi方程的多值解方面的工作使他开发了更强大和有效的数值方法来解决这些方程,并将这些新方法纳入地震建模和反演,以及其他可能的应用。正在考虑的问题包括三维各向同性和各向异性介质的自适应正交解的持续发展;非结构网格上平稳hamilton - jacobe方程组的快速扫描方法将慢度匹配方法推广到一般Hamilton-Jacobi方程求解多值解;近轴刘维尔方程在几何光学、波传播和透射层析成像中的应用。这项研究推进了几何光学、波传播和地震走时层析成像技术的发展。这些领域和应用在美国石油和天然气工业、环境科学和医学成像方面具有重要的战略价值。例如,最近美国的汽油价格急剧飙升。降低石油生产成本的一种方法是通过提高地震数据处理技术来降低钻井成本,石油公司利用地震数据处理技术来寻找好的钻井地点。研究人员的新方法加快了常规数据处理,为勘探地球物理学家提供了用于突破性应用的新工具,并在地震勘探中节省了大量成本,因为底层计算引擎的速度和可靠性允许“钻机现场”调整地震调查和钻井决策。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianliang Qian其他文献

Correction to: A Finite Element/Operator-Splitting Method for the Numerical Solution of the Two Dimensional Elliptic Monge–Ampère Equation
  • DOI:
    10.1007/s10915-018-0854-z
  • 发表时间:
    2018-10-28
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Roland Glowinski;Hao Liu;Shingyu Leung;Jianliang Qian
  • 通讯作者:
    Jianliang Qian
Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension
  • DOI:
    10.1016/j.jcp.2005.08.020
  • 发表时间:
    2006-04-10
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas C. Cecil;Stanley J. Osher;Jianliang Qian
  • 通讯作者:
    Jianliang Qian
Hadamard integrators for wave equations in time and frequency domain: Eulerian formulations via butterfly algorithms
时域和频域波动方程的 Hadamard 积分器:通过蝶形算法的欧拉公式
  • DOI:
    10.48550/arxiv.2401.01423
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuxiao Wei;Jin Cheng;Shingyu Leung;Robert Burridge;Jianliang Qian
  • 通讯作者:
    Jianliang Qian
Tensor-FLAMINGO unravels the complexity of single-cell spatial architectures of genomes at high-resolution
Tensor-FLAMINGO 以高分辨率揭示了基因组单细胞空间结构的复杂性
  • DOI:
    10.1038/s41467-025-58674-w
  • 发表时间:
    2025-04-11
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Hao Wang;Jiaxin Yang;Xinrui Yu;Yu Zhang;Jianliang Qian;Jianrong Wang
  • 通讯作者:
    Jianrong Wang
An accurate spectral/discontinuous finite-element formulation of a phase-space-based level set approach to geometrical optics
  • DOI:
    10.1016/j.jcp.2005.02.009
  • 发表时间:
    2005-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Bernardo Cockburn;Jianliang Qian;Fernando Reitich;Jing Wang
  • 通讯作者:
    Jing Wang

Jianliang Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianliang Qian', 18)}}的其他基金

Innovative Butterfly-Compressed Microlocal Hadamard-Babich Integrators for Large-Scale High-Frequency Wave Modeling and Inversion in Variable Media
用于可变介质中大规模高频波建模和反演的创新型蝶形压缩微局域 Hadamard-Babich 积分器
  • 批准号:
    2309534
  • 财政年份:
    2023
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
Collaborative: Novel Fast Microlocal, Domain-Decomposition Algorithms for High-Frequency Elastic Wave Modeling and Inversion in Variable Media
协作:用于可变介质中高频弹性波建模和反演的新型快速微局部域分解算法
  • 批准号:
    2012046
  • 财政年份:
    2020
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomographry
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
  • 批准号:
    1614566
  • 财政年份:
    2016
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Continuing Grant
Fast Huygens Sweeping Methods for Large-Scale High Frequency Wave Propagation and Wave-Related Imaging Problems
用于大规模高频波传播和波相关成像问题的快速惠更斯扫描方法
  • 批准号:
    1522249
  • 财政年份:
    2015
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
Conference on mathematical and computational challenges of wave propagation and inverse problems
波传播和反问题的数学和计算挑战会议
  • 批准号:
    1439979
  • 财政年份:
    2014
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
Fast level-set methods for large-scale geospatial-information based inverse gravimetry problems and applications to threats detection
基于大规模地理空间信息的反重力问题的快速水平集方法及其在威胁检测中的应用
  • 批准号:
    1222368
  • 财政年份:
    2012
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for high-frequency waves and inverse problems
用于高频波和反演问题的快速多尺度高斯波包变换和多尺度高斯光束
  • 批准号:
    1115363
  • 财政年份:
    2011
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
IMA Participating Institution Graduate Summer School 2010: Computational Wave Propagation, Michigan State University
IMA参与机构研究生暑期学校2010:计算波传播,密歇根州立大学
  • 批准号:
    1011791
  • 财政年份:
    2010
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
New numerical methods for Hamilton-Jacobi equations, Gaussian beams, and kinetic inverse problems
Hamilton-Jacobi 方程、高斯梁和动力学反问题的新数值方法
  • 批准号:
    0810104
  • 财政年份:
    2008
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
New Numerical Methods for Hamilton-Jacobi and Liouville Equations; Their Applications to Geometrical Optics, Wave Propagation and Travel-time Tomography
Hamilton-Jacobi 和 Liouville 方程的新数值方法;
  • 批准号:
    0753797
  • 财政年份:
    2007
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant

相似海外基金

Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
  • 批准号:
    559297-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
  • 批准号:
    559297-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Early-Career Participant Support: The 13th International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM); Portsmouth, New Hampshire; June 23-27, 2019
早期职业参与者支持:第 13 届工业成形过程数值方法国际会议 (NUMIFORM);
  • 批准号:
    1916600
  • 财政年份:
    2019
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
Development of new efficient structure-preserving numerical methods based on model reductions
基于模型简化的新型高效结构保持数值方法的开发
  • 批准号:
    17H02826
  • 财政年份:
    2017
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New Numerical Methods for Molecular Integrals in Local Electron Correlated Wavefunction Theory
局域电子相关波函数理论中分子积分的新数值方法
  • 批准号:
    454127-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Postdoctoral Fellowships
Development of estimation methods of physical quantities of new snow considering cloud microphysical processes using numerical meteorological model
利用数值气象模型建立考虑云微物理过程的新雪物理量估算方法
  • 批准号:
    16K01340
  • 财政年份:
    2016
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New Developments in Geometric and Multiscale Numerical Methods
几何和多尺度数值方法的新进展
  • 批准号:
    1522337
  • 财政年份:
    2015
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
New Numerical Methods for Molecular Integrals in Local Electron Correlated Wavefunction Theory
局域电子相关波函数理论中分子积分的新数值方法
  • 批准号:
    454127-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Postdoctoral Fellowships
New Numerical Methods for Molecular Integrals in Local Electron Correlated Wavefunction Theory
局域电子相关波函数理论中分子积分的新数值方法
  • 批准号:
    454127-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Postdoctoral Fellowships
New High-Accurate Numerical Methods for Inverse Problems by the Direct Computations of Integral Equations of the First Kind
第一类积分方程直接计算反问题的高精度数值新方法
  • 批准号:
    26400198
  • 财政年份:
    2014
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了