Conference on mathematical and computational challenges of wave propagation and inverse problems

波传播和反问题的数学和计算挑战会议

基本信息

  • 批准号:
    1439979
  • 负责人:
  • 金额:
    $ 4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This project provides participant support for the ``Conference on mathematical and computational challenges of wave propagation and inverse problems'' that will be held in April 9-11, 2015 on the campus of Michigan State University, East Lansing, MI. The theme of the conference is "wave propagation in inverse problems". Wave propogation and inverse problems have tremendous applications in medical imaging and exploration of Earth natural resources. This conference brings together leading researchers in the world to discuss recent advances on such applications. The conference also provides ample opportunity for graduate students, post-docs, junior faculty, especially women, under-represented minorities and people with disabilities to present their work. By locating the conference central to the Michigan State University campus, participation of local, non-mathematical students and scientists will be maximized.The conference contributes significantly to the advancement of research and education in applied and computational mathematics. The conference focuses on three related topics. The first is the development of wave-related multi-scale, multi-physics modeling, analysis, and computation techniques. The second is the integration of inverse problem techniques with imaging analysis methods for important physical processes that arise in radar and sonar, geophysical exploration, non-destructive testing, and medical imaging. The third is the stochastic modeling and uncertainty quantification of the large scale wave propagation focusing on imaging and inversion in random media. The conference provides a forum to update recent progress on these research areas. By interspersing theoretical, applied, and computational talks in the conference program, this focused conference will encourage collaboration between scientists with various disciplinary backgrounds. By outlining the potential impact that theoretical tools can have on the most salient issues of our day, the conference will influence and invigorate the educational efforts at the institutions of the conference speakers.
该项目为将于2015年4月9日至11日在密歇根州东兰辛的密歇根州立大学校园举行的“波传播和逆问题的数学和计算挑战会议”提供参与者支持。会议的主题是“反问题中的波传播”。波的传播与反问题在医学成像和地球资源勘探中有着广泛的应用。本次会议汇集了世界领先的研究人员,讨论这些应用的最新进展。会议还为研究生,博士后,初级教师,特别是女性,代表性不足的少数民族和残疾人提供了充分的机会来展示他们的工作。通过将会议定位在密歇根州立大学校园的中心,将最大限度地提高当地非数学学生和科学家的参与度。会议将为应用和计算数学的研究和教育的进步做出重大贡献。会议将重点讨论三个相关主题。第一个是与波相关的多尺度、多物理场建模、分析和计算技术的发展。第二个是反问题技术与成像分析方法的集成,用于雷达和声纳,地球物理勘探,无损检测和医学成像中出现的重要物理过程。三是大尺度波动传播的随机建模和不确定性量化,重点研究随机介质中的成像和反演。会议提供了一个论坛,以更新这些研究领域的最新进展。通过在会议计划中穿插理论,应用和计算会谈,这个重点会议将鼓励具有各种学科背景的科学家之间的合作。通过概述理论工具对当今最突出问题的潜在影响,会议将影响和激励会议发言人机构的教育工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianliang Qian其他文献

Correction to: A Finite Element/Operator-Splitting Method for the Numerical Solution of the Two Dimensional Elliptic Monge–Ampère Equation
  • DOI:
    10.1007/s10915-018-0854-z
  • 发表时间:
    2018-10-28
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Roland Glowinski;Hao Liu;Shingyu Leung;Jianliang Qian
  • 通讯作者:
    Jianliang Qian
Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension
  • DOI:
    10.1016/j.jcp.2005.08.020
  • 发表时间:
    2006-04-10
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas C. Cecil;Stanley J. Osher;Jianliang Qian
  • 通讯作者:
    Jianliang Qian
Hadamard integrators for wave equations in time and frequency domain: Eulerian formulations via butterfly algorithms
时域和频域波动方程的 Hadamard 积分器:通过蝶形算法的欧拉公式
  • DOI:
    10.48550/arxiv.2401.01423
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuxiao Wei;Jin Cheng;Shingyu Leung;Robert Burridge;Jianliang Qian
  • 通讯作者:
    Jianliang Qian
Tensor-FLAMINGO unravels the complexity of single-cell spatial architectures of genomes at high-resolution
Tensor-FLAMINGO 以高分辨率揭示了基因组单细胞空间结构的复杂性
  • DOI:
    10.1038/s41467-025-58674-w
  • 发表时间:
    2025-04-11
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Hao Wang;Jiaxin Yang;Xinrui Yu;Yu Zhang;Jianliang Qian;Jianrong Wang
  • 通讯作者:
    Jianrong Wang
An accurate spectral/discontinuous finite-element formulation of a phase-space-based level set approach to geometrical optics
  • DOI:
    10.1016/j.jcp.2005.02.009
  • 发表时间:
    2005-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Bernardo Cockburn;Jianliang Qian;Fernando Reitich;Jing Wang
  • 通讯作者:
    Jing Wang

Jianliang Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianliang Qian', 18)}}的其他基金

Innovative Butterfly-Compressed Microlocal Hadamard-Babich Integrators for Large-Scale High-Frequency Wave Modeling and Inversion in Variable Media
用于可变介质中大规模高频波建模和反演的创新型蝶形压缩微局域 Hadamard-Babich 积分器
  • 批准号:
    2309534
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Collaborative: Novel Fast Microlocal, Domain-Decomposition Algorithms for High-Frequency Elastic Wave Modeling and Inversion in Variable Media
协作:用于可变介质中高频弹性波建模和反演的新型快速微局部域分解算法
  • 批准号:
    2012046
  • 财政年份:
    2020
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomographry
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
  • 批准号:
    1614566
  • 财政年份:
    2016
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Fast Huygens Sweeping Methods for Large-Scale High Frequency Wave Propagation and Wave-Related Imaging Problems
用于大规模高频波传播和波相关成像问题的快速惠更斯扫描方法
  • 批准号:
    1522249
  • 财政年份:
    2015
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Fast level-set methods for large-scale geospatial-information based inverse gravimetry problems and applications to threats detection
基于大规模地理空间信息的反重力问题的快速水平集方法及其在威胁检测中的应用
  • 批准号:
    1222368
  • 财政年份:
    2012
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for high-frequency waves and inverse problems
用于高频波和反演问题的快速多尺度高斯波包变换和多尺度高斯光束
  • 批准号:
    1115363
  • 财政年份:
    2011
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
IMA Participating Institution Graduate Summer School 2010: Computational Wave Propagation, Michigan State University
IMA参与机构研究生暑期学校2010:计算波传播,密歇根州立大学
  • 批准号:
    1011791
  • 财政年份:
    2010
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
New numerical methods for Hamilton-Jacobi equations, Gaussian beams, and kinetic inverse problems
Hamilton-Jacobi 方程、高斯梁和动力学反问题的新数值方法
  • 批准号:
    0810104
  • 财政年份:
    2008
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
New Numerical Methods for Hamilton-Jacobi and Liouville Equations; Their Applications to Geometrical Optics, Wave Propagation and Travel-time Tomography
Hamilton-Jacobi 和 Liouville 方程的新数值方法;
  • 批准号:
    0753797
  • 财政年份:
    2007
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
New Numerical Methods for Hamilton-Jacobi and Liouville Equations; Their Applications to Geometrical Optics, Wave Propagation and Travel-time Tomography
Hamilton-Jacobi 和 Liouville 方程的新数值方法;
  • 批准号:
    0542174
  • 财政年份:
    2005
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant

相似海外基金

2023 Collective Behavior Gordon Research Conference
2023年集体行为戈登研究会议
  • 批准号:
    10683596
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
2023 Basic Mechanisms to Clinical Trials in Brain Tumors Gordon Research Conference
2023年脑肿瘤临床试验的基本机制戈登研究会议
  • 批准号:
    10751111
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
Conference on Frontiers in Applied and Computational Mathematics (FACM-2022): New Perspectives in Mathematical Biology
应用与计算数学前沿会议(FACM-2022):数学生物学的新视角
  • 批准号:
    2154556
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
CSHL 2023 Conference on Systems Immunology
CSHL 2023系统免疫学会议
  • 批准号:
    10608272
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
2021 Physical Science of Cancer Gordon Research Conference and Gordon Research Seminar
2021癌症物理科学戈登研究大会暨戈登研究研讨会
  • 批准号:
    10154448
  • 财政年份:
    2021
  • 资助金额:
    $ 4万
  • 项目类别:
The Fifth Conference on Computational and Mathematical Population Dynamics
第五届计算与数学群体动力学会议
  • 批准号:
    1917506
  • 财政年份:
    2019
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
The Fourth Conference on Computational and Mathematical Population Dynamics
第四届计算与数学群体动力学会议
  • 批准号:
    1266178
  • 财政年份:
    2013
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
2011 Cardiac Arrhythmia Mechanisms Gordon Research Conference
2011年心律失常机制戈登研究会议
  • 批准号:
    8118660
  • 财政年份:
    2011
  • 资助金额:
    $ 4万
  • 项目类别:
ASM Conference on Beneficial Microbes: Host-Microbe Interactions in Health and Di
ASM 有益微生物会议:健康和疾病中宿主与微生物的相互作用
  • 批准号:
    7915958
  • 财政年份:
    2010
  • 资助金额:
    $ 4万
  • 项目类别:
The Third Conference on Computational and Mathematical Population Dynamics (CMPD3)
第三届计算与数学群体动力学会议(CMPD3)
  • 批准号:
    1016803
  • 财政年份:
    2010
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了