Fast Huygens Sweeping Methods for Large-Scale High Frequency Wave Propagation and Wave-Related Imaging Problems

用于大规模高频波传播和波相关成像问题的快速惠更斯扫描方法

基本信息

  • 批准号:
    1522249
  • 负责人:
  • 金额:
    $ 32.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Most information is communicated in the form of waves, and it is critical to carry out wave simulations to advance science and engineering disciplines. In fact, computational wave propagation has become a fundamental, vigorously growing technology in diverse disciplines ranging from radar, sonar, seismic imaging, medical imaging, submarine detection, stealth technology, remote sensing, and electronics to microscopy and nanotechnology. These fields and applications are of great strategic value in the petroleum industry, in medical imaging, and in materials science. One of the most challenging problems in computational wave propagation is how to carry out large-scale high frequency wave propagation efficiently and accurately. This research project develops novel, fast numerical methods for high frequency wave propagation to tackle this long-standing challenge. The investigator will develop and implement new data-enabled fast Huygens sweeping methods for large-scale high-frequency wave modeling and imaging with big data sets motivated by industrial and military applications. The goal is to develop efficient and accurate sweeping methods for the Helmholtz and Maxwell equations in inhomogeneous media in the high frequency regime and in the presence of caustics. This project will foster breakthrough innovations in at least four theoretical and computational aspects: first, fast higher-order sweeping methods for computing Eulerian geometrical-optics ingredients, such as eikonals and amplitudes; second, butterfly-algorithm-based fast Huygens sweeping methods for large-scale high-frequency wave modeling and simulation; third, fast Huygens sweeping-imaging methods for big seismic data sets; and fourth, implementations of these new algorithms on a range of novel parallel-computing architectures. Data-enabled fast Huygens sweeping algorithms will be developed for the first time for these large-scale imaging applications.
大多数信息都是以波浪的形式传递的,进行波浪模拟对于推进科学和工程学科的发展至关重要。事实上,计算波传播已经成为一个基本的,蓬勃发展的技术在不同的学科,从雷达,声纳,地震成像,医学成像,潜艇探测,隐形技术,遥感,电子显微镜和纳米技术。这些领域和应用在石油工业、医学成像和材料科学中具有重要的战略价值。如何高效、准确地进行大规模高频波传播是计算波传播中最具挑战性的问题之一。 该研究项目开发了用于高频波传播的新型快速数值方法,以应对这一长期挑战。研究人员将开发和实施新的数据驱动的快速惠更斯扫描方法,用于大规模高频波建模和成像,其中大数据集由工业和军事应用驱动。目标是在高频区域和存在焦散线的情况下,为非均匀介质中的亥姆霍兹和麦克斯韦方程开发高效和精确的扫描方法。该项目将在至少四个理论和计算方面促进突破性创新:第一,用于计算欧拉几何光学成分(如eikonals和振幅)的快速高阶扫描方法;第二,用于大规模高频波建模和模拟的基于蝴蝶算法的快速惠更斯扫描方法;第三,用于大地震数据集的快速惠更斯扫描成像方法;第四,这些新算法在一系列新颖的并行计算架构上的实现。数据支持的快速惠更斯扫描算法将首次为这些大规模成像应用开发。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning dominant wave directions for plane wave methods for high-frequency Helmholtz equations
  • DOI:
    10.1186/s40687-017-0098-9
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    J. Fang;J. Qian;Leonardo Zepeda-Núñez;Hongkai Zhao
  • 通讯作者:
    J. Fang;J. Qian;Leonardo Zepeda-Núñez;Hongkai Zhao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianliang Qian其他文献

Correction to: A Finite Element/Operator-Splitting Method for the Numerical Solution of the Two Dimensional Elliptic Monge–Ampère Equation
  • DOI:
    10.1007/s10915-018-0854-z
  • 发表时间:
    2018-10-28
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Roland Glowinski;Hao Liu;Shingyu Leung;Jianliang Qian
  • 通讯作者:
    Jianliang Qian
Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension
  • DOI:
    10.1016/j.jcp.2005.08.020
  • 发表时间:
    2006-04-10
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas C. Cecil;Stanley J. Osher;Jianliang Qian
  • 通讯作者:
    Jianliang Qian
Hadamard integrators for wave equations in time and frequency domain: Eulerian formulations via butterfly algorithms
时域和频域波动方程的 Hadamard 积分器:通过蝶形算法的欧拉公式
  • DOI:
    10.48550/arxiv.2401.01423
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuxiao Wei;Jin Cheng;Shingyu Leung;Robert Burridge;Jianliang Qian
  • 通讯作者:
    Jianliang Qian
Tensor-FLAMINGO unravels the complexity of single-cell spatial architectures of genomes at high-resolution
Tensor-FLAMINGO 以高分辨率揭示了基因组单细胞空间结构的复杂性
  • DOI:
    10.1038/s41467-025-58674-w
  • 发表时间:
    2025-04-11
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Hao Wang;Jiaxin Yang;Xinrui Yu;Yu Zhang;Jianliang Qian;Jianrong Wang
  • 通讯作者:
    Jianrong Wang
An accurate spectral/discontinuous finite-element formulation of a phase-space-based level set approach to geometrical optics
  • DOI:
    10.1016/j.jcp.2005.02.009
  • 发表时间:
    2005-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Bernardo Cockburn;Jianliang Qian;Fernando Reitich;Jing Wang
  • 通讯作者:
    Jing Wang

Jianliang Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianliang Qian', 18)}}的其他基金

Innovative Butterfly-Compressed Microlocal Hadamard-Babich Integrators for Large-Scale High-Frequency Wave Modeling and Inversion in Variable Media
用于可变介质中大规模高频波建模和反演的创新型蝶形压缩微局域 Hadamard-Babich 积分器
  • 批准号:
    2309534
  • 财政年份:
    2023
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Standard Grant
Collaborative: Novel Fast Microlocal, Domain-Decomposition Algorithms for High-Frequency Elastic Wave Modeling and Inversion in Variable Media
协作:用于可变介质中高频弹性波建模和反演的新型快速微局部域分解算法
  • 批准号:
    2012046
  • 财政年份:
    2020
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomographry
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
  • 批准号:
    1614566
  • 财政年份:
    2016
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Continuing Grant
Conference on mathematical and computational challenges of wave propagation and inverse problems
波传播和反问题的数学和计算挑战会议
  • 批准号:
    1439979
  • 财政年份:
    2014
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Standard Grant
Fast level-set methods for large-scale geospatial-information based inverse gravimetry problems and applications to threats detection
基于大规模地理空间信息的反重力问题的快速水平集方法及其在威胁检测中的应用
  • 批准号:
    1222368
  • 财政年份:
    2012
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Standard Grant
Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for high-frequency waves and inverse problems
用于高频波和反演问题的快速多尺度高斯波包变换和多尺度高斯光束
  • 批准号:
    1115363
  • 财政年份:
    2011
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Standard Grant
IMA Participating Institution Graduate Summer School 2010: Computational Wave Propagation, Michigan State University
IMA参与机构研究生暑期学校2010:计算波传播,密歇根州立大学
  • 批准号:
    1011791
  • 财政年份:
    2010
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Standard Grant
New numerical methods for Hamilton-Jacobi equations, Gaussian beams, and kinetic inverse problems
Hamilton-Jacobi 方程、高斯梁和动力学反问题的新数值方法
  • 批准号:
    0810104
  • 财政年份:
    2008
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Standard Grant
New Numerical Methods for Hamilton-Jacobi and Liouville Equations; Their Applications to Geometrical Optics, Wave Propagation and Travel-time Tomography
Hamilton-Jacobi 和 Liouville 方程的新数值方法;
  • 批准号:
    0753797
  • 财政年份:
    2007
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Standard Grant
New Numerical Methods for Hamilton-Jacobi and Liouville Equations; Their Applications to Geometrical Optics, Wave Propagation and Travel-time Tomography
Hamilton-Jacobi 和 Liouville 方程的新数值方法;
  • 批准号:
    0542174
  • 财政年份:
    2005
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Standard Grant

相似海外基金

Giant nonlinear refractive index and applications by Huygens dipole in silicon Mie resonator
巨非线性折射率及其惠更斯偶极子在硅米氏谐振器中的应用
  • 批准号:
    22K18987
  • 财政年份:
    2022
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Tailored and reconfigurable Huygens' metasurfaces
定制和可重构的惠更斯超表面
  • 批准号:
    506365-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Strategic Projects - Group
Tailored and reconfigurable Huygens' metasurfaces
定制和可重构的惠更斯超表面
  • 批准号:
    506365-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Strategic Projects - Group
Tailored and reconfigurable Huygens' metasurfaces
定制和可重构的惠更斯超表面
  • 批准号:
    506365-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Strategic Projects - Group
CAREER: Low-Loss and Tunable Optical Huygens Metasurfaces
职业:低损耗、可调谐光学惠更斯超表面
  • 批准号:
    1654765
  • 财政年份:
    2017
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Continuing Grant
Beam steering by Huygens metasurfaces for sensing applications
惠更斯超表面用于传感应用的光束控制
  • 批准号:
    LP160100253
  • 财政年份:
    2017
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Linkage Projects
Investigation of Titan's meteorology in the light of the Cassini/Huygens mission by means of a general circulation model
根据卡西尼号/惠更斯号任务,利用大气环流模型研究土卫六的气象学
  • 批准号:
    60249993
  • 财政年份:
    2007
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Research Grants
Investigation of Titan's meteorology in the light of the Cassini/Huygens mission by means of a general circulation model
根据卡西尼号/惠更斯号任务,利用大气环流模型研究土卫六的气象学
  • 批准号:
    18407334
  • 财政年份:
    2005
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Priority Programmes
Development of real time simulator for acoustic field based on discrete Huygens' model
基于离散惠更斯模型的声场实时模拟器的研制
  • 批准号:
    16560214
  • 财政年份:
    2004
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dissertation Research: Christiaan Huygens: The Construction of Texts and Audiences
论文研究:克里斯蒂安·惠更斯:文本和受众的构建
  • 批准号:
    0094472
  • 财政年份:
    2001
  • 资助金额:
    $ 32.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了