New numerical methods for Hamilton-Jacobi equations, Gaussian beams, and kinetic inverse problems
Hamilton-Jacobi 方程、高斯梁和动力学反问题的新数值方法
基本信息
- 批准号:0810104
- 负责人:
- 金额:$ 17.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator, with his students and collaborators, develops novel and efficient numerical methods for Hamilton-Jacobi equations, Gaussian beams, and kinetic inverse problems. Hamilton-Jacobi equations arise from seismic wave propagation, geometrical optics, optimal control, traveltime tomography, medical imaging, computer vision, and material sciences. His previous works range from fast sweeping methods for Hamilton-Jacobi equations on triangulated meshes, level-set based Eulerian geometrical optics, to fast numerical methods for traveltime tomography. These successful works lead him to develop more powerful numerical methods for these equations and incorporate these new numerical methods into seismic modeling and inversion, as well as other possible applications.Problems under consideration include developing Legendre-transform based fast sweeping methods for stationary Hamilton-Jacobi equations on triangulated meshes, developing fast algorithms for kinetic inverse problems based on discretizing eikonal equations on triangulated meshes, developing fast algorithms for geodesic X-ray transforms in kinetic inverse problems, developing Eulerian Gaussian beams for high frequency waves, and developing Eulerian Gaussian beam methods for semi-classical quantum mechanics.This investigation advances the state-of-the-art in numerical methods for Hamilton-Jacobi equations, high frequency wave propagation and kinetic inverse problems.These fields and applications are of great strategic value in the US petroleum industry, in the medical imaging, and in material sciences and nanotechnology. The current surge in price for crude oil and other earth resources increasingly demands better imaging techniques in exploration seismology. The increasing amount of data in global and exploration seismology requires more sophisticated mathematical models. The techniques developed as part of this project will provide crucial tools for the development of the next-generation seismic imaging tools that enable substantial cost savings in seismic explorations and expedite routine data processing.
研究者,与他的学生和合作者,开发新的和有效的数值方法的哈密顿-雅可比方程,高斯光束,动力学逆问题。Hamilton-Jacobi方程起源于地震波传播、几何光学、最优控制、走时层析成像、医学成像、计算机视觉和材料科学。他以前的工作范围从快速扫描方法的三角网格,基于水平集的欧拉几何光学,快速数值方法的走时层析成像的Hamilton-Jacobi方程。这些成功的工作使他为这些方程开发了更强大的数值方法,并将这些新的数值方法融入地震建模和反演以及其他可能的应用中。正在考虑的问题包括开发基于Legendre变换的快速扫描方法,用于三角网格上的定常Hamilton-Jacobi方程,开发基于三角网格上程函方程离散化的动力学逆问题的快速算法,开发动力学逆问题中测地X射线变换的快速算法,发展了用于高频波的欧拉高斯光束方法和用于半经典量子力学的欧拉高斯光束方法,发展了用于Hamilton-Jacobi方程、高频波传播和动力学逆问题的数值方法,这些领域和应用在美国石油工业中具有重要的战略价值,在医学成像、材料科学和纳米技术方面。目前原油和其他地球资源价格的飙升对勘探地震学中成像技术的要求越来越高。全球地震学和勘探地震学中数据量的增加需要更复杂的数学模型。作为该项目一部分开发的技术将为开发下一代地震成像工具提供关键工具,从而能够在地震勘探中大幅节省成本并加快日常数据处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianliang Qian其他文献
Correction to: A Finite Element/Operator-Splitting Method for the Numerical Solution of the Two Dimensional Elliptic Monge–Ampère Equation
- DOI:
10.1007/s10915-018-0854-z - 发表时间:
2018-10-28 - 期刊:
- 影响因子:3.300
- 作者:
Roland Glowinski;Hao Liu;Shingyu Leung;Jianliang Qian - 通讯作者:
Jianliang Qian
Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension
- DOI:
10.1016/j.jcp.2005.08.020 - 发表时间:
2006-04-10 - 期刊:
- 影响因子:
- 作者:
Thomas C. Cecil;Stanley J. Osher;Jianliang Qian - 通讯作者:
Jianliang Qian
Hadamard integrators for wave equations in time and frequency domain: Eulerian formulations via butterfly algorithms
时域和频域波动方程的 Hadamard 积分器:通过蝶形算法的欧拉公式
- DOI:
10.48550/arxiv.2401.01423 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuxiao Wei;Jin Cheng;Shingyu Leung;Robert Burridge;Jianliang Qian - 通讯作者:
Jianliang Qian
Tensor-FLAMINGO unravels the complexity of single-cell spatial architectures of genomes at high-resolution
Tensor-FLAMINGO 以高分辨率揭示了基因组单细胞空间结构的复杂性
- DOI:
10.1038/s41467-025-58674-w - 发表时间:
2025-04-11 - 期刊:
- 影响因子:15.700
- 作者:
Hao Wang;Jiaxin Yang;Xinrui Yu;Yu Zhang;Jianliang Qian;Jianrong Wang - 通讯作者:
Jianrong Wang
An accurate spectral/discontinuous finite-element formulation of a phase-space-based level set approach to geometrical optics
- DOI:
10.1016/j.jcp.2005.02.009 - 发表时间:
2005-09-01 - 期刊:
- 影响因子:
- 作者:
Bernardo Cockburn;Jianliang Qian;Fernando Reitich;Jing Wang - 通讯作者:
Jing Wang
Jianliang Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianliang Qian', 18)}}的其他基金
Innovative Butterfly-Compressed Microlocal Hadamard-Babich Integrators for Large-Scale High-Frequency Wave Modeling and Inversion in Variable Media
用于可变介质中大规模高频波建模和反演的创新型蝶形压缩微局域 Hadamard-Babich 积分器
- 批准号:
2309534 - 财政年份:2023
- 资助金额:
$ 17.06万 - 项目类别:
Standard Grant
Collaborative: Novel Fast Microlocal, Domain-Decomposition Algorithms for High-Frequency Elastic Wave Modeling and Inversion in Variable Media
协作:用于可变介质中高频弹性波建模和反演的新型快速微局部域分解算法
- 批准号:
2012046 - 财政年份:2020
- 资助金额:
$ 17.06万 - 项目类别:
Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomographry
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
- 批准号:
1614566 - 财政年份:2016
- 资助金额:
$ 17.06万 - 项目类别:
Continuing Grant
Fast Huygens Sweeping Methods for Large-Scale High Frequency Wave Propagation and Wave-Related Imaging Problems
用于大规模高频波传播和波相关成像问题的快速惠更斯扫描方法
- 批准号:
1522249 - 财政年份:2015
- 资助金额:
$ 17.06万 - 项目类别:
Standard Grant
Conference on mathematical and computational challenges of wave propagation and inverse problems
波传播和反问题的数学和计算挑战会议
- 批准号:
1439979 - 财政年份:2014
- 资助金额:
$ 17.06万 - 项目类别:
Standard Grant
Fast level-set methods for large-scale geospatial-information based inverse gravimetry problems and applications to threats detection
基于大规模地理空间信息的反重力问题的快速水平集方法及其在威胁检测中的应用
- 批准号:
1222368 - 财政年份:2012
- 资助金额:
$ 17.06万 - 项目类别:
Standard Grant
Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for high-frequency waves and inverse problems
用于高频波和反演问题的快速多尺度高斯波包变换和多尺度高斯光束
- 批准号:
1115363 - 财政年份:2011
- 资助金额:
$ 17.06万 - 项目类别:
Standard Grant
IMA Participating Institution Graduate Summer School 2010: Computational Wave Propagation, Michigan State University
IMA参与机构研究生暑期学校2010:计算波传播,密歇根州立大学
- 批准号:
1011791 - 财政年份:2010
- 资助金额:
$ 17.06万 - 项目类别:
Standard Grant
New Numerical Methods for Hamilton-Jacobi and Liouville Equations; Their Applications to Geometrical Optics, Wave Propagation and Travel-time Tomography
Hamilton-Jacobi 和 Liouville 方程的新数值方法;
- 批准号:
0753797 - 财政年份:2007
- 资助金额:
$ 17.06万 - 项目类别:
Standard Grant
New Numerical Methods for Hamilton-Jacobi and Liouville Equations; Their Applications to Geometrical Optics, Wave Propagation and Travel-time Tomography
Hamilton-Jacobi 和 Liouville 方程的新数值方法;
- 批准号:
0542174 - 财政年份:2005
- 资助金额:
$ 17.06万 - 项目类别:
Standard Grant
相似国自然基金
超声行波微流体驱动机理的试验研究
- 批准号:51075243
- 批准年份:2010
- 资助金额:39.0 万元
- 项目类别:面上项目
关于图像处理模型的目标函数构造及其数值方法研究
- 批准号:11071228
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
- 批准号:40972154
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
- 批准号:10872219
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
- 批准号:
559297-2021 - 财政年份:2022
- 资助金额:
$ 17.06万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
- 批准号:
559297-2021 - 财政年份:2021
- 资助金额:
$ 17.06万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Early-Career Participant Support: The 13th International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM); Portsmouth, New Hampshire; June 23-27, 2019
早期职业参与者支持:第 13 届工业成形过程数值方法国际会议 (NUMIFORM);
- 批准号:
1916600 - 财政年份:2019
- 资助金额:
$ 17.06万 - 项目类别:
Standard Grant
Development of new efficient structure-preserving numerical methods based on model reductions
基于模型简化的新型高效结构保持数值方法的开发
- 批准号:
17H02826 - 财政年份:2017
- 资助金额:
$ 17.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New Numerical Methods for Molecular Integrals in Local Electron Correlated Wavefunction Theory
局域电子相关波函数理论中分子积分的新数值方法
- 批准号:
454127-2014 - 财政年份:2016
- 资助金额:
$ 17.06万 - 项目类别:
Postdoctoral Fellowships
Development of estimation methods of physical quantities of new snow considering cloud microphysical processes using numerical meteorological model
利用数值气象模型建立考虑云微物理过程的新雪物理量估算方法
- 批准号:
16K01340 - 财政年份:2016
- 资助金额:
$ 17.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Developments in Geometric and Multiscale Numerical Methods
几何和多尺度数值方法的新进展
- 批准号:
1522337 - 财政年份:2015
- 资助金额:
$ 17.06万 - 项目类别:
Standard Grant
New Numerical Methods for Molecular Integrals in Local Electron Correlated Wavefunction Theory
局域电子相关波函数理论中分子积分的新数值方法
- 批准号:
454127-2014 - 财政年份:2015
- 资助金额:
$ 17.06万 - 项目类别:
Postdoctoral Fellowships
New Numerical Methods for Molecular Integrals in Local Electron Correlated Wavefunction Theory
局域电子相关波函数理论中分子积分的新数值方法
- 批准号:
454127-2014 - 财政年份:2014
- 资助金额:
$ 17.06万 - 项目类别:
Postdoctoral Fellowships
New High-Accurate Numerical Methods for Inverse Problems by the Direct Computations of Integral Equations of the First Kind
第一类积分方程直接计算反问题的高精度数值新方法
- 批准号:
26400198 - 财政年份:2014
- 资助金额:
$ 17.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)