Collaborative: Novel Fast Microlocal, Domain-Decomposition Algorithms for High-Frequency Elastic Wave Modeling and Inversion in Variable Media
协作:用于可变介质中高频弹性波建模和反演的新型快速微局部域分解算法
基本信息
- 批准号:2012046
- 负责人:
- 金额:$ 21.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wave propagation is an important phenomenon in many science and engineering disciplines. Computational wave propagation has become a fundamental, vigorously growing technology in diverse disciplines, ranging from radar, sonar, seismic imaging, medical imaging, submarine detection, stealth technology, remote sensing and electronics to microscopy and nanotechnology. These applications are important in particular for the petroleum industry, medical imaging, and material sciences. One of the most challenging problems in computational wave propagation is how to carry out large-scale high frequency wave propagation efficiently and accurately. The investigators in this project will develop novel, fast algorithms for high frequency elastic wave propagation and inversion. In particular, they will focus on novel techniques including microlocal-analysis and domain-decomposition based fast Huygens sweeping methods and fast multiscale Gaussian beam methods to tackle this long-standing challenge. Graduate students will be involved and receive interdisciplinary training. The project is motivated by science and engineering applications, and it will foster innovations in several theoretical and computational aspects. The goal is to develop efficient and accurate Hadamard-Babich expansion based fast Huygens sweeping methods and multiscale Gaussian wavepacket transform based fast multiscale Gaussian beams for elastic wave propagation in variable media in the high frequency regime and in the presence of caustics. Several thrusts will be considered. First, the proposed new methods will address the challenges in large-scale high-frequency elastic wave modeling and inversion in the presence of caustics. Second, advances will be made in developing novel Hadamard-Babich expansion, domain decomposition, and butterfly-algorithm based fast Huygens sweeping methods for partial differential equation-based Eulerian geometrical optics and computational wave propagation. Both the Hadamard-Babich expansion and domain-decomposition based fast Huygens sweeping method and the fast multiscale Gaussian beam method are capable of producing uniform asymptotic solutions beyond caustics for wave propagation in the high-frequency regime. Third, the new methods will provide efficient tools not used before for many elastic wave-related applications in inhomogeneous media, such as seismic imaging and inversion, and medical imaging and inversion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
波的传播是许多科学和工程学科中的重要现象。从雷达、声纳、地震成像、医学成像、潜艇探测、隐身技术、遥感和电子技术到显微镜和纳米技术,计算波传播已经成为一项基本的、蓬勃发展的技术。这些应用对石油工业、医学成像和材料科学尤其重要。如何高效、准确地进行大规模的高频波传播是计算波传播中最具挑战性的问题之一。该项目的研究人员将开发新的、快速的高频弹性波传播和反演算法。特别是,他们将专注于新技术,包括基于微局部分析和区域分解的快速惠更斯扫描方法和快速多尺度高斯光束方法,以应对这一长期存在的挑战。研究生将参与并接受跨学科培训。该项目的动机是科学和工程应用,它将促进几个理论和计算方面的创新。目标是发展高效和准确的基于Hadamard-Babich展开的快速惠更斯扫描方法和基于多尺度高斯波包变换的快速多尺度高斯光束,用于在高频和焦散存在的可变介质中传播弹性波。将考虑几个突击方案。首先,提出的新方法将解决在存在焦散的情况下大规模高频弹性波建模和反演的挑战。其次,将在开发基于偏微分方程组的欧拉几何光学和计算波传播的基于Hadamard-Babich展开、区域分解和蝴蝶算法的快速惠更斯扫描方法方面取得进展。基于Hadamard-Babich展开和区域分解的快速惠更斯扫描法和快速多尺度高斯束方法都能够在高频区产生超越焦散的一致渐近解。第三,新方法将为非均匀介质中的许多与弹性波相关的应用提供以前没有使用过的有效工具,如地震成像和反演以及医学成像和反演。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Liouville partial-differential-equation methods for computing 2D complex multivalued eikonals in attenuating media
用于计算衰减介质中二维复多值征函数的刘维尔偏微分方程方法
- DOI:10.1190/geo2021-0113.1
- 发表时间:2022
- 期刊:
- 影响因子:3.3
- 作者:Leung, Shingyu;Hu, Jiangtao;Qian, Jianliang
- 通讯作者:Qian, Jianliang
A Level-Set Adjoint-State Method for Transmission Traveltime Tomography in Irregular Domains
不规则域传输走时层析成像的水平集伴随态方法
- DOI:10.1137/20m1383082
- 发表时间:2021
- 期刊:
- 影响因子:3.1
- 作者:Leung, Shingyu;Qian, Jianliang;Hu, Jiangtao
- 通讯作者:Hu, Jiangtao
Eulerian partial-differential-equation methods for complex-valued eikonals in attenuating media
- DOI:10.1190/geo2020-0659.1
- 发表时间:2021-07-01
- 期刊:
- 影响因子:3.3
- 作者:Hu, Jiangtao;Qian, Jianliang;Leung, Shingyu
- 通讯作者:Leung, Shingyu
A Fast Butterfly-Compressed Hadamard–Babich Integrator for High-Frequency Helmholtz Equations in Inhomogeneous Media with Arbitrary Sources
任意源非均匀介质中高频亥姆霍兹方程的快速蝶形压缩 Hadamard-Babich 积分器
- DOI:10.1137/21m1450422
- 发表时间:2023
- 期刊:
- 影响因子:1.6
- 作者:Liu, Yang;Song, Jian;Burridge, Robert;Qian, Jianliang
- 通讯作者:Qian, Jianliang
Enhanced pulsed thermoacoustic imaging by noncoherent pulse compression
- DOI:10.1063/5.0062148
- 发表时间:2021-11-07
- 期刊:
- 影响因子:3.2
- 作者:Alzuhiri, Mohand;Song, Jian;Deng, Yiming
- 通讯作者:Deng, Yiming
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianliang Qian其他文献
Correction to: A Finite Element/Operator-Splitting Method for the Numerical Solution of the Two Dimensional Elliptic Monge–Ampère Equation
- DOI:
10.1007/s10915-018-0854-z - 发表时间:
2018-10-28 - 期刊:
- 影响因子:3.300
- 作者:
Roland Glowinski;Hao Liu;Shingyu Leung;Jianliang Qian - 通讯作者:
Jianliang Qian
Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension
- DOI:
10.1016/j.jcp.2005.08.020 - 发表时间:
2006-04-10 - 期刊:
- 影响因子:
- 作者:
Thomas C. Cecil;Stanley J. Osher;Jianliang Qian - 通讯作者:
Jianliang Qian
Hadamard integrators for wave equations in time and frequency domain: Eulerian formulations via butterfly algorithms
时域和频域波动方程的 Hadamard 积分器:通过蝶形算法的欧拉公式
- DOI:
10.48550/arxiv.2401.01423 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuxiao Wei;Jin Cheng;Shingyu Leung;Robert Burridge;Jianliang Qian - 通讯作者:
Jianliang Qian
Tensor-FLAMINGO unravels the complexity of single-cell spatial architectures of genomes at high-resolution
Tensor-FLAMINGO 以高分辨率揭示了基因组单细胞空间结构的复杂性
- DOI:
10.1038/s41467-025-58674-w - 发表时间:
2025-04-11 - 期刊:
- 影响因子:15.700
- 作者:
Hao Wang;Jiaxin Yang;Xinrui Yu;Yu Zhang;Jianliang Qian;Jianrong Wang - 通讯作者:
Jianrong Wang
An accurate spectral/discontinuous finite-element formulation of a phase-space-based level set approach to geometrical optics
- DOI:
10.1016/j.jcp.2005.02.009 - 发表时间:
2005-09-01 - 期刊:
- 影响因子:
- 作者:
Bernardo Cockburn;Jianliang Qian;Fernando Reitich;Jing Wang - 通讯作者:
Jing Wang
Jianliang Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianliang Qian', 18)}}的其他基金
Innovative Butterfly-Compressed Microlocal Hadamard-Babich Integrators for Large-Scale High-Frequency Wave Modeling and Inversion in Variable Media
用于可变介质中大规模高频波建模和反演的创新型蝶形压缩微局域 Hadamard-Babich 积分器
- 批准号:
2309534 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomographry
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
- 批准号:
1614566 - 财政年份:2016
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Fast Huygens Sweeping Methods for Large-Scale High Frequency Wave Propagation and Wave-Related Imaging Problems
用于大规模高频波传播和波相关成像问题的快速惠更斯扫描方法
- 批准号:
1522249 - 财政年份:2015
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Conference on mathematical and computational challenges of wave propagation and inverse problems
波传播和反问题的数学和计算挑战会议
- 批准号:
1439979 - 财政年份:2014
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Fast level-set methods for large-scale geospatial-information based inverse gravimetry problems and applications to threats detection
基于大规模地理空间信息的反重力问题的快速水平集方法及其在威胁检测中的应用
- 批准号:
1222368 - 财政年份:2012
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for high-frequency waves and inverse problems
用于高频波和反演问题的快速多尺度高斯波包变换和多尺度高斯光束
- 批准号:
1115363 - 财政年份:2011
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
IMA Participating Institution Graduate Summer School 2010: Computational Wave Propagation, Michigan State University
IMA参与机构研究生暑期学校2010:计算波传播,密歇根州立大学
- 批准号:
1011791 - 财政年份:2010
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
New numerical methods for Hamilton-Jacobi equations, Gaussian beams, and kinetic inverse problems
Hamilton-Jacobi 方程、高斯梁和动力学反问题的新数值方法
- 批准号:
0810104 - 财政年份:2008
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
New Numerical Methods for Hamilton-Jacobi and Liouville Equations; Their Applications to Geometrical Optics, Wave Propagation and Travel-time Tomography
Hamilton-Jacobi 和 Liouville 方程的新数值方法;
- 批准号:
0753797 - 财政年份:2007
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
New Numerical Methods for Hamilton-Jacobi and Liouville Equations; Their Applications to Geometrical Optics, Wave Propagation and Travel-time Tomography
Hamilton-Jacobi 和 Liouville 方程的新数值方法;
- 批准号:
0542174 - 财政年份:2005
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
相似国自然基金
Novel-miR-1134调控LHCGR的表达介导拟
穴青蟹卵巢发育的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
- 批准号:32002421
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
- 批准号:31902347
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
- 批准号:
2425308 - 财政年份:2024
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
DCAD - Developing better diagnostics for Coronary Artery Disease with novel AI-enhanced, ultra fast proteomics
DCAD - 利用新型 AI 增强型超快速蛋白质组学开发更好的冠状动脉疾病诊断方法
- 批准号:
10072712 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Collaborative R&D
Development of compound RUEC2-118, a novel partial GABAAR positive modulator, a fast-acting treatment for general anxiety and panic disorder, to prevent opioid and benzodiazepine overdose fatalities.
开发化合物 RUEC2-118,这是一种新型部分 GABAAR 正调节剂,可快速治疗一般性焦虑和恐慌症,以预防阿片类药物和苯二氮卓类药物过量死亡。
- 批准号:
10684503 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Feasibility testing of a novel AI-enabled, cloud-based ECG diagnostic solution to enable fast and affordable diagnosis in long-term continuous ambulatory ECG monitoring
对新型人工智能、基于云的心电图诊断解决方案进行可行性测试,以在长期连续动态心电图监测中实现快速且经济实惠的诊断
- 批准号:
10545691 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
- 批准号:
2213274 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Lifetime measurements of novel ultra-fast PMTs for kaon tagging at the NA62 experiment at CERN
CERN NA62 实验中用于 kaon 标记的新型超快 PMT 的寿命测量
- 批准号:
ST/W005581/1 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Research Grant
Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications
新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造
- 批准号:
RGPIN-2019-04750 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Discovery Grants Program - Individual
Novel Oral Yeast Immunotherapies for Ulcerative Colitis (Fast-track)
治疗溃疡性结肠炎的新型口服酵母免疫疗法(快速通道)
- 批准号:
10610406 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别: