Identification and Empirical Inference
识别与经验推论
基本信息
- 批准号:0549544
- 负责人:
- 金额:$ 21.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator plans to expand his recent research on treatment choice with partial knowledge of treatment response, which has developed out of his earlier work on partial identification. Part of the research willaddress general methodological questions and another part will investigate specific substantive problems ofsocial planning. He also will continue his longstanding program of research on partial identification per se.Intellectual Merit: The investigators research on identification is deliberately conservative. The traditionalway to cope with sampling processes that partially identify population parameters has been to combine theavailable data with assumptions strong enough to yield point identification. Such assumptions often are notwell motivated, and empirical researchers often debate their validity. Conservative analysis enablesresearchers to learn from the available data without imposing untenable assumptions. It enables establishmentof a domain of consensus among researchers who may hold disparate beliefs about what assumptions areappropriate. It also makes plain the limitations of the available data.The investigators analysis of treatment choice is similarly conservative. His research shows howsocial planners and other decision makers can cope coherently with difficult problems of choice underambiguity induced by identification problems and the necessity of statistical inference from sample data,without imposing untenable assumptions. This is achieved using well-established principles of statisticaldecision theory, particularly through application of the minimax-regret criterion.Broader Impacts: Many persistent public policy controversies reflect divergent beliefs about the effects ofgovernment policy on society. Such divergent beliefs are often manifest in dueling policy studies that usedifferent analytical approaches or data sources to reach different policy conclusions. Each study may makesense in its own terms, each combining data with conjectures to draw logically valid conclusions. However,there may be no way to determine which study (if either) makes realistic conjectures and which (if either)draws empirically correct conclusions. The investigators conservative approach to empirical inference andtreatment choice can enable the public to better evaluate the credibility of existing policy studies, enhancethe credibility of future policy research, and improve the quality of policymaking
这位研究人员计划扩大他最近关于治疗选择的研究,利用治疗反应的部分知识,这是从他早期的部分识别工作发展而来的。一部分研究将解决一般的方法论问题,另一部分将调查社会规划的具体实质性问题。他还将继续其长期的部分身份识别研究计划。智力上的优点:调查人员对身份识别的研究故意保守。处理部分识别总体参数的抽样过程的传统方法是将现有数据与足以产生点识别的假设相结合。这样的假设通常不是出于某种动机,经验研究人员经常对它们的有效性进行辩论。保守分析使研究人员能够从现有数据中学习,而不会强加站不住脚的假设。它使研究人员之间建立了一个共识领域,这些研究人员可能对什么假设是合适的持有不同的信念。这也说明了现有数据的局限性。研究人员对治疗选择的分析同样保守。他的研究表明,社会规划者和其他决策者如何在不强加站不住脚的假设的情况下,协调一致地处理由识别问题引起的选择不足的困难问题,以及从样本数据进行统计推断的必要性。这是使用公认的统计决策理论原则实现的,特别是通过应用最小最大后悔标准。广泛的影响:许多持续存在的公共政策争议反映了对政府政策对社会的影响的不同看法。这种不同的信念经常体现在使用不同分析方法或数据来源得出不同政策结论的决斗政策研究中。每一项研究都可能用自己的术语来表达,每一项研究都将数据与猜测结合起来,得出逻辑上有效的结论。然而,可能没有办法确定哪项研究(如果有的话)做出了现实的猜测,哪项研究(如果有的话)得出了经验性的正确结论。研究人员以保守的方法进行经验推断和治疗选择,可以使公众更好地评估现有政策研究的可信度,增强未来政策研究的可信度,并提高政策制定的质量
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Manski其他文献
Institute for Research on Poverty Discussion Papers Causes of Intercity Variation in Homelessness
贫困研究所讨论论文城市间无家可归者差异的原因
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
M. Honig;R. Filer;Steve Bartolomei;Howard Chernick;Steven Craig;Martha Hill;Charles Manski;Kathryn Nelson;Cordelia - 通讯作者:
Cordelia
Treatment of Critical Bleeding Events in Patients with Immune Thrombocytopenia: A Systematic Review
- DOI:
10.1182/blood-2023-179448 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Emily Sirotich;Saifur Chowdhury;Gordon Guyatt;Daya Gill;Dimpy Modi;Laura Venier;Kerolos Eisa;Carolyn E Beck;Vicky R. Breakey;Kerstin de Wit;Stephen Porter;Kathryn Elizabeth Webert;Adam Cuker;Clare O'Connor;Jennifer MacWhirter - DiRaimo;Justin Yan;Charles Manski;John G. Kelton;Matthew Kang;Gail Strachan - 通讯作者:
Gail Strachan
Searching for “ Arms ” : Experimentation with Endogenous Consideration Sets ∗
寻找“武器”:内生考虑因素的实验*
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Daniel Fershtman;‡. AlessandroPavan;Dirk Bergemann;Eddie Dekel;David Dillenberger;Laura Doval;K. Eliaz;Teddy Kim;S. Lauermann;Charles Manski;Benny Moldovanu;Xiaosheng Mu;Derek Neal;Michael Ostrovsky;Philip J. Reny;Andrew Rhodes;E. Shmaya;Andy Skrzypacz;Rani Spiegler;Bruno H. Strulovici;A. Wolinsky;Jidong Zhou - 通讯作者:
Jidong Zhou
Lectures on Evaluation of Social Programs
社会项目评估讲座
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Professor V Joseph Hotz;D. Campbell;J. Stanley;I. Garfinkel;Charles Manski;Jerry Hausman;David Wise;Charles Man;D. Greenberg;R. Meyer;M. Wiseman;G. Cain;S. Bell;L. Orr;W. Lin;J. Heckman - 通讯作者:
J. Heckman
Charles Manski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Manski', 18)}}的其他基金
Identification and Empirical Inference
识别与经验推论
- 批准号:
0314312 - 财政年份:2003
- 资助金额:
$ 21.13万 - 项目类别:
Continuing Grant
Identification Problems in the Social Sciences
社会科学中的识别问题
- 批准号:
0001436 - 财政年份:2000
- 资助金额:
$ 21.13万 - 项目类别:
Continuing Grant
Identification Problems in the Social Sciences
社会科学中的识别问题
- 批准号:
9722846 - 财政年份:1997
- 资助金额:
$ 21.13万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Subjective Expectations of Employment, Earnings and Income
博士论文研究:就业、收入和收入的主观预期
- 批准号:
9321044 - 财政年份:1994
- 资助金额:
$ 21.13万 - 项目类别:
Standard Grant
Identification Problems in the Social Sciences
社会科学中的识别问题
- 批准号:
9223220 - 财政年份:1993
- 资助金额:
$ 21.13万 - 项目类别:
Continuing Grant
Econometric Analysis of Decision Making (Accomplishment Based Renewal)
决策的计量经济学分析(基于成就的更新)
- 批准号:
8808276 - 财政年份:1988
- 资助金额:
$ 21.13万 - 项目类别:
Continuing Grant
Econometric Analysis of Discrete Choice Models
离散选择模型的计量经济学分析
- 批准号:
8605436 - 财政年份:1986
- 资助金额:
$ 21.13万 - 项目类别:
Continuing Grant
相似海外基金
Who is most affected by bullying in academic performance? An empirical study using causal inference and machine learning
谁在学业成绩上受到欺凌的影响最大?
- 批准号:
23K01372 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The many paths to ecological network inference: reconciling machine learning, empirical data, and ecological knowledge
生态网络推理的多种途径:协调机器学习、经验数据和生态知识
- 批准号:
RGPAS-2021-00015 - 财政年份:2022
- 资助金额:
$ 21.13万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
The many paths to ecological network inference: reconciling machine learning, empirical data, and ecological knowledge
生态网络推理的多种途径:协调机器学习、经验数据和生态知识
- 批准号:
RGPIN-2021-03112 - 财政年份:2022
- 资助金额:
$ 21.13万 - 项目类别:
Discovery Grants Program - Individual
The many paths to ecological network inference: reconciling machine learning, empirical data, and ecological knowledge
生态网络推理的多种途径:协调机器学习、经验数据和生态知识
- 批准号:
RGPAS-2021-00015 - 财政年份:2021
- 资助金额:
$ 21.13万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
The many paths to ecological network inference: reconciling machine learning, empirical data, and ecological knowledge
生态网络推理的多种途径:协调机器学习、经验数据和生态知识
- 批准号:
RGPIN-2021-03112 - 财政年份:2021
- 资助金额:
$ 21.13万 - 项目类别:
Discovery Grants Program - Individual
An Empirical Model of Limited Consideration: Robust Inference for Risk Preferences
有限考虑的经验模型:风险偏好的稳健推论
- 批准号:
1824448 - 财政年份:2018
- 资助金额:
$ 21.13万 - 项目类别:
Standard Grant
Robust nonparametric inference for infinite variance processes by self-weighted empirical likelihood method
通过自加权经验似然法对无限方差过程进行鲁棒非参数推理
- 批准号:
16K16022 - 财政年份:2016
- 资助金额:
$ 21.13万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Statistical inference and empirical study on the measurement of risk and its propagation
风险度量及其传播的统计推断和实证研究
- 批准号:
16H03605 - 财政年份:2016
- 资助金额:
$ 21.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Statistical inference and empirical analysis of high frequency market data
高频市场数据的统计推断与实证分析
- 批准号:
25245034 - 财政年份:2013
- 资助金额:
$ 21.13万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Weighted empirical likelihood inference with applications to case-control studies
加权经验似然推断及其在病例对照研究中的应用
- 批准号:
416198-2011 - 财政年份:2011
- 资助金额:
$ 21.13万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




