Countable Convergence in Compact Spaces
紧凑空间中的可数收敛性
基本信息
- 批准号:0554896
- 负责人:
- 金额:$ 18.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI investigates independence results in the study of countableconvergence questions in the class of compact spaces. Some of thequestions remain unresolved even in the presence of the Proper ForcingAxiom. The sequential order of a space is a natural ordinal invariantthat measures the complexity of a sequential space; the question ofwhether there can be a finite or countable bound on this invariant forcompact spaces has only been resolved under CH. We will also studycontinuous maps on the remainder of the Stone-Cech compactification ofthe integers which are finite-to-one. We will try to determine if suchmaps have to be "somewhere trivial" and whether the range space will behomeomorphic to the domain. This question has been fully resolved underPFA but not, for example, under MA. Two other questions about theremainder of N under PFA: can it be covered by nowhere dense P-sets andcan there be non-trivial copies of the remainder?When one formalizes the limiting process of an infinite sequence ofsteps one is naturally lead to the notion of topological space. Pointsin physical space can be analyzed using the notion of a convergingsequence, but just as mathematics has a need for a much broaderunderstanding of points (e.g. functions or processes themselves lying ina space of like processes), so too has the need for a broaderunderstanding of limit and topological space been developed to handleconvergence in the more general settings. The investigation into thenature of generalized convergence, connections between conditions thatmay imply the existence of (the much easier to understand and apply)classical convergent sequences, and the behavior of the convergencestructure under deformations is on-going and productive. These notionsare very sensitive to the foundational axioms of mathematics and thequestions serve as both a testbed for foundational study and a generatorof new development. One of the most famously indeterminate questions ofmathematics, the continuum hypothesis (the "size" of the real numberline) is intimately connected to these questions of convergence.
PI研究了紧空间类中可数收敛问题的独立性结果。有些问题即使在真力公理存在的情况下仍然没有得到解决。空间的序是一个自然的序不变量,它度量了序空间的复杂性;紧空间的这个不变量是否有有限或可数的界的问题只有在CH下才得到解决。我们还将研究整数的Stone-Cech紧化的剩余部分上的连续映射,这些整数是有限到1的。我们将试图确定这样的映射是否必须是“某个平凡的地方”,以及值域空间是否同胚于定义域。这一问题在《行动纲领》下已得到充分解决,但在《千年评估》等文书下却没有得到解决。关于PFA下N的余项的另外两个问题:它能被无处稠密的P-集覆盖吗?当一个人形式化的限制过程的一个无限序列的步骤之一是自然导致的概念拓扑空间。点的物理空间可以用收敛序列的概念来分析,但正如数学需要对点有更广泛的理解(例如,函数或过程本身位于类似过程的空间中)一样,也需要对极限和拓扑空间有更广泛的理解,以便在更一般的设置中处理收敛。对广义收敛的性质、可能暗示经典收敛序列存在的条件(更容易理解和应用)之间的联系以及变形下收敛结构的行为的研究正在进行中并且富有成效。这些概念对数学的基本公理非常敏感,这些问题既是基础研究的试验台,也是新发展的生成器。数学中最著名的不确定问题之一,连续统假设(真实的数线的“大小”)与这些收敛问题密切相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Dow其他文献
Laver forcing and converging sequences
拉弗强迫法与收敛序列
- DOI:
10.1016/j.apal.2023.103247 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:0.600
- 作者:
Alan Dow - 通讯作者:
Alan Dow
PFA(<em>S</em>)[<em>S</em>] and countably compact spaces
- DOI:
10.1016/j.topol.2017.08.021 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow;Franklin D. Tall - 通讯作者:
Franklin D. Tall
Generalized side-conditions and Moore–Mrówka
- DOI:
10.1016/j.topol.2015.10.016 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow - 通讯作者:
Alan Dow
Cozero-accessible points
- DOI:
10.1016/j.topol.2009.04.010 - 发表时间:
2009-10-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow - 通讯作者:
Alan Dow
Efimovʼs problem and Boolean algebras
- DOI:
10.1016/j.topol.2013.09.006 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow;Roberto Pichardo-Mendoza - 通讯作者:
Roberto Pichardo-Mendoza
Alan Dow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Dow', 18)}}的其他基金
Sixth European Set Theory Conference
第六届欧洲集合论会议
- 批准号:
1730786 - 财政年份:2017
- 资助金额:
$ 18.33万 - 项目类别:
Standard Grant
31st Summer Conference on Topology and its Applications
第31届夏季拓扑及其应用会议
- 批准号:
1616393 - 财政年份:2016
- 资助金额:
$ 18.33万 - 项目类别:
Standard Grant
Set-theoretic methods and the study of compact spaces
集合论方法和紧空间的研究
- 批准号:
1501506 - 财政年份:2015
- 资助金额:
$ 18.33万 - 项目类别:
Continuing Grant
Set-theoretic methods in the study of compact spaces
紧空间研究中的集合论方法
- 批准号:
0901168 - 财政年份:2009
- 资助金额:
$ 18.33万 - 项目类别:
Standard Grant
Study of Countable Convergence Conditions in Compact Spaces
紧空间中可数收敛条件的研究
- 批准号:
0103985 - 财政年份:2001
- 资助金额:
$ 18.33万 - 项目类别:
Continuing Grant
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 18.33万 - 项目类别:
Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 18.33万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 18.33万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 18.33万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 18.33万 - 项目类别:
Standard Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
- 批准号:
2303525 - 财政年份:2024
- 资助金额:
$ 18.33万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 18.33万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 18.33万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 18.33万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 18.33万 - 项目类别:
Standard Grant