Study of Countable Convergence Conditions in Compact Spaces

紧空间中可数收敛条件的研究

基本信息

  • 批准号:
    0103985
  • 负责人:
  • 金额:
    $ 19.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

DMS-0103985Alan DowThe Principle Investigator proposes to focus on three central problems in set-theoretic topology which involve basic countable convergence issues and set-theoretic independence results. The first question, due to Efimov, is to determine if it is consistent that any compact space that does not contain a converging sequence will contain the Stone-Cech compactification of the integers. The second, due to Bashkirov, is to determine if there can be a countable bound on the sequential order of a compact sequential space. This problem can, in some ways, be viewed as a very interesting strengthening of the recently resolved Moore-Mrowka problem. The third is to continue a systematic study of the Stone-Cech remainder of the reals analogous to that which has long been conducted for the remainder of the integers. There appears to be many obstructions to progess caused by the additional complexity imposed by the connectedness property.General questions of the existence of converging sequences and the extent to which converging sequences fully determine the topological structure arise frequently in a variety of settings. These questions are particularly meaningful in the context of compact subsets of function spaces (naturalinformative topologies on sets of real-valued functions). The investigator is continuing to pursue lines of investigation that have stimulated intensive interaction between the fields of general topology and set-theory for de
DMS-0103985Alan DowThe Principal Investigator建议专注于集合论拓扑中的三个中心问题,涉及基本的可数收敛问题和集合论独立性结果。第一个问题,由于Efimov,是要确定是否是一致的,任何不包含收敛序列的紧空间将包含整数的Stone-Cech紧化。第二,由于Bashkirov,是确定是否可以有一个可数界上的序列顺序的一个紧凑的序列空间。在某些方面,这个问题可以被看作是最近解决的摩尔-姆洛卡问题的一个非常有趣的加强。第三个是继续系统研究的斯通-切赫其余的实数类似的,这已经进行了很长时间的其余的整数。似乎有许多障碍所造成的额外的复杂性所施加的连通性property.General收敛序列的存在性和收敛序列在多大程度上完全决定了拓扑结构的问题经常出现在各种设置。这些问题在函数空间的紧致子集(实值函数集上的naturalinformative拓扑)的背景下特别有意义。调查人员正在继续追求的调查线,刺激了密集的相互作用领域之间的一般拓扑学和集合论的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Dow其他文献

Laver forcing and converging sequences
拉弗强迫法与收敛序列
PFA(<em>S</em>)[<em>S</em>] and countably compact spaces
  • DOI:
    10.1016/j.topol.2017.08.021
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alan Dow;Franklin D. Tall
  • 通讯作者:
    Franklin D. Tall
Generalized side-conditions and Moore–Mrówka
  • DOI:
    10.1016/j.topol.2015.10.016
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alan Dow
  • 通讯作者:
    Alan Dow
Cozero-accessible points
  • DOI:
    10.1016/j.topol.2009.04.010
  • 发表时间:
    2009-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alan Dow
  • 通讯作者:
    Alan Dow
Efimovʼs problem and Boolean algebras
  • DOI:
    10.1016/j.topol.2013.09.006
  • 发表时间:
    2013-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alan Dow;Roberto Pichardo-Mendoza
  • 通讯作者:
    Roberto Pichardo-Mendoza

Alan Dow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Dow', 18)}}的其他基金

Sixth European Set Theory Conference
第六届欧洲集合论会议
  • 批准号:
    1730786
  • 财政年份:
    2017
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
31st Summer Conference on Topology and its Applications
第31届夏季拓扑及其应用会议
  • 批准号:
    1616393
  • 财政年份:
    2016
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
Set-theoretic methods and the study of compact spaces
集合论方法和紧空间的研究
  • 批准号:
    1501506
  • 财政年份:
    2015
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Continuing Grant
Set-theoretic methods in the study of compact spaces
紧空间研究中的集合论方法
  • 批准号:
    0901168
  • 财政年份:
    2009
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
Countable Convergence in Compact Spaces
紧凑空间中的可数收敛性
  • 批准号:
    0554896
  • 财政年份:
    2006
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Continuing Grant

相似海外基金

Topological Dynamics and Countable Combinatorics
拓扑动力学和可数组合学
  • 批准号:
    2054302
  • 财政年份:
    2021
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
Frequency of digits for Countable Markov maps without the big image property
没有大图像属性的可数马尔可夫映射的数字频率
  • 批准号:
    2278542
  • 财政年份:
    2019
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Studentship
The countable lifting property for vector lattices surjections
矢量晶格满射的可数提升性质
  • 批准号:
    526310-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 19.63万
  • 项目类别:
    University Undergraduate Student Research Awards
Establishment of a CMOS image sensor with photon countable sensitivity, linear response and high full well capacity
具有光子可计数灵敏度、线性响应和高满阱容量的CMOS图像传感器的建立
  • 批准号:
    15H02245
  • 财政年份:
    2015
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Rational points on varieties in families, and countable unions of varieties over countable fields
科内品种的有理点以及可数域内品种的可数并集
  • 批准号:
    0841321
  • 财政年份:
    2008
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Continuing Grant
Rational points on varieties in families, and countable unions of varieties over countable fields
科内品种的有理点以及可数域内品种的可数并集
  • 批准号:
    0801263
  • 财政年份:
    2008
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Continuing Grant
Countable Convergence in Compact Spaces
紧凑空间中的可数收敛性
  • 批准号:
    0554896
  • 财政年份:
    2006
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Continuing Grant
Computability Theory, Reverse Mathematics and Countable Algebraic Structures
可计算性理论、逆向数学和可数代数结构
  • 批准号:
    0400754
  • 财政年份:
    2004
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
The countable convergence structure of compact topological spaces
紧拓扑空间的可数收敛结构
  • 批准号:
    38464-1997
  • 财政年份:
    2001
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Discovery Grants Program - Individual
The countable convergence structure of compact topological spaces
紧拓扑空间的可数收敛结构
  • 批准号:
    38464-1997
  • 财政年份:
    2000
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了