31st Summer Conference on Topology and its Applications
第31届夏季拓扑及其应用会议
基本信息
- 批准号:1616393
- 负责人:
- 金额:$ 3.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports the participation of US based graduate students, early career researchers and workshop leaders at the 31st Summer Topology Conference on Topology and its Applications, which will be held August 2-5, 2016 at the University of Leicester. This conference series originated in New York City and specializes in advancing the development of topological methods and applications to a broad range of areas including computer science, analysis, and algebra. It maintains a tradition of an inclusive attitude towards developing new application areas. Special focus this year is on algebraic topology as well as new mathematical notions of spectrum in connection with diffraction for point-patterns modelling distributions of matter. The goal of the conference is to present the latest developments in several areas of topology and its methods, and to foster collaborations and bridges between them. The scope of the conference includes special sessions in Algebraic Topology, Continuum Theory and Dynamical Systems, Topology and Foundations, as well as sessions featuring applications to Computer Science and Analysis. The session in Algebraic Topology will feature newly developed categorical methods. The session on Continuum Theory and Dynamical Systems will highlight recent results in hyperbolic 3-manifolds and aperiodic flows on 3-manifolds. The conference website is https://sites.google.com/site/summertopology/home
该奖项支持美国研究生、早期职业研究人员和研讨会负责人参加将于2016年8月2日至5日在莱斯特大学举行的第31届夏季拓扑学及其应用会议。这一系列会议起源于纽约市,专门致力于推动拓扑学方法的发展和应用到包括计算机科学、分析和代数在内的广泛领域。它保持了对开发新的应用领域采取包容态度的传统。今年特别关注的是代数拓扑学以及与点图案衍射有关的新的光谱数学概念,以模拟物质的分布。会议的目标是展示拓扑学及其方法几个领域的最新发展,并促进它们之间的合作和桥梁。会议的范围包括代数拓扑学、连续统理论和动力系统、拓扑学和基础的专题会议,以及计算机科学和分析的应用会议。代数拓扑学的课程将以新开发的分类方法为特色。关于连续统理论和动力系统的会议将重点介绍关于双曲三维流形和三维流形上的非周期流动的最新结果。会议网址为:https://sites.google.com/site/summertopology/home
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Dow其他文献
Laver forcing and converging sequences
拉弗强迫法与收敛序列
- DOI:
10.1016/j.apal.2023.103247 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:0.600
- 作者:
Alan Dow - 通讯作者:
Alan Dow
PFA(<em>S</em>)[<em>S</em>] and countably compact spaces
- DOI:
10.1016/j.topol.2017.08.021 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow;Franklin D. Tall - 通讯作者:
Franklin D. Tall
Generalized side-conditions and Moore–Mrówka
- DOI:
10.1016/j.topol.2015.10.016 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow - 通讯作者:
Alan Dow
Cozero-accessible points
- DOI:
10.1016/j.topol.2009.04.010 - 发表时间:
2009-10-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow - 通讯作者:
Alan Dow
Efimovʼs problem and Boolean algebras
- DOI:
10.1016/j.topol.2013.09.006 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow;Roberto Pichardo-Mendoza - 通讯作者:
Roberto Pichardo-Mendoza
Alan Dow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Dow', 18)}}的其他基金
Set-theoretic methods and the study of compact spaces
集合论方法和紧空间的研究
- 批准号:
1501506 - 财政年份:2015
- 资助金额:
$ 3.12万 - 项目类别:
Continuing Grant
Set-theoretic methods in the study of compact spaces
紧空间研究中的集合论方法
- 批准号:
0901168 - 财政年份:2009
- 资助金额:
$ 3.12万 - 项目类别:
Standard Grant
Countable Convergence in Compact Spaces
紧凑空间中的可数收敛性
- 批准号:
0554896 - 财政年份:2006
- 资助金额:
$ 3.12万 - 项目类别:
Continuing Grant
Study of Countable Convergence Conditions in Compact Spaces
紧空间中可数收敛条件的研究
- 批准号:
0103985 - 财政年份:2001
- 资助金额:
$ 3.12万 - 项目类别:
Continuing Grant
相似海外基金
Rossbypalooza 2024: A Student-led Summer School on Climate and Extreme Events Conference; Chicago, Illinois; July 22-August 2, 2024
Rossbypalooza 2024:学生主导的气候和极端事件暑期学校会议;
- 批准号:
2406927 - 财政年份:2024
- 资助金额:
$ 3.12万 - 项目类别:
Standard Grant
Conference: Artificial Intelligence Summer School for Computer Science and Operations Research Education; College Park, Maryland; 19-24 May 2024
会议:计算机科学和运筹学教育人工智能暑期学校;
- 批准号:
2408982 - 财政年份:2024
- 资助金额:
$ 3.12万 - 项目类别:
Standard Grant
2024 Summer Biomechanics, Bioengineering, and Biotransport Conference; Lake Geneva, Wisconsin; 11-14 June 2024
2024年夏季生物力学、生物工程和生物运输会议;
- 批准号:
2413182 - 财政年份:2024
- 资助金额:
$ 3.12万 - 项目类别:
Standard Grant
Travel Grant: Conference Support for the Python in Heliophysics Community (PyHC) 2024 Summer School; Boulder, Colorado; May 20-24, 2024
旅费资助:太阳物理学社区 (PyHC) 2024 年 Python 暑期学校会议支持;
- 批准号:
2414651 - 财政年份:2024
- 资助金额:
$ 3.12万 - 项目类别:
Standard Grant
Conference: Connecticut Summer School in Number Theory 2024
会议:康涅狄格州数论暑期学校 2024
- 批准号:
2402637 - 财政年份:2024
- 资助金额:
$ 3.12万 - 项目类别:
Standard Grant
Conference: Summer Geometry Initiative 2024
会议:2024 年夏季几何倡议
- 批准号:
2419933 - 财政年份:2024
- 资助金额:
$ 3.12万 - 项目类别:
Standard Grant
Conference: AGNES Summer School in Algebraic Geometry
会议:AGNES 代数几何暑期学校
- 批准号:
2312088 - 财政年份:2023
- 资助金额:
$ 3.12万 - 项目类别:
Standard Grant
Conference: SRCOS Summer Research Conference in Statistics and Biostatistics
会议:SRCOS 统计和生物统计学夏季研究会议
- 批准号:
2327635 - 财政年份:2023
- 资助金额:
$ 3.12万 - 项目类别:
Standard Grant
Conference: INTERNATIONAL SUMMER SCHOOL ON DATA SCIENCE AND ENGINEERING IN HEALTHCARE, MEDICINE AND BIOLOGY, JUNE 4 -10, 2023, CRETE, GREECE:
会议:国际医疗保健、医学和生物学数据科学与工程暑期学校,2023 年 6 月 4 日至 10 日,希腊克里特岛:
- 批准号:
2323134 - 财政年份:2023
- 资助金额:
$ 3.12万 - 项目类别:
Standard Grant
Conference: 2023 Princeton Summer School on Combustion and the Environment
会议:2023 年普林斯顿燃烧与环境暑期学校
- 批准号:
2310055 - 财政年份:2023
- 资助金额:
$ 3.12万 - 项目类别:
Standard Grant