Set-theoretic methods in the study of compact spaces
紧空间研究中的集合论方法
基本信息
- 批准号:0901168
- 负责人:
- 金额:$ 9.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-12-01 至 2015-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI investigates independence results in the study of countableconvergence questions in the class of compact spaces. The fundamental questions concern understanding the dichotomy between the assumption that infinite sequences have converging subsequences or that the space contains a copy of the Stone-Cech compactification of the integers. One of main projects is to answer Efimov's question of whether it is consistent that one or the other must be true in each compact space. Another is to complete our project of determining if there is a small upper bound to the natural notion called the sequential order of a compact (sequential) space. The structure of the remainder of the Stone-Cech compactification of the integers, known as N*, and continuing an important line of investigation following Shelah's breakthrough result on self-homeomorphisms, the behavior of continuous maps with that as the domain, will be investigated. Given the current state of knowledge, it is quite interesting that most of these questions remain unresolved in models of the celebrated Proper Forcing Axiom (PFA) and forcing extensions of models in which this axiom holds. This project will be adding to the toolbox of techniques and results in this central area of study. Unquestionably, there is a huge literature on the structure of N* and we will continue our project of investigating the analogous questions that naturally arise about an equally fundamental space, R* for the real number (half-) line R. There is a fundamental difference that arises from the fact that this space is a continuum and possible applications to topological dynamics provide additional motivation.
PI研究紧空间类中可数收敛问题的独立性结果。基本问题涉及到理解假设无限序列具有收敛的子序列或空间包含整数的Stone-Cech紧凑化的副本之间的二分法。主要项目之一是回答埃菲莫夫的问题,即在每个紧凑的空间中,一个或另一个肯定是正确的,这一问题是否一致。另一个是完成我们的项目,即确定自然概念是否存在一个小的上界,称为紧凑(顺序)空间的顺序。我们将研究整数的Stone-Cech紧化的剩余部分(称为N*)的结构,并在Shelah关于自同胚的突破性结果之后继续进行重要的研究,即以此为域的连续映射的行为。鉴于目前的知识状况,相当有趣的是,这些问题中的大多数在著名的真强迫公理(PFA)和强迫扩展的模型中仍然没有得到解决,在这些模型中,这个公理是成立的。该项目将增加这一中心研究领域的技术和成果工具箱。毫无疑问,关于N*的结构有大量的文献,我们将继续我们的项目,研究关于同样基本的空间,R*对于实数(半)线R自然产生的类似问题。这个空间是一个连续体,这一事实产生了根本的不同,可能的拓扑动力学应用提供了额外的动机。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Dow其他文献
PFA(<em>S</em>)[<em>S</em>] and countably compact spaces
- DOI:
10.1016/j.topol.2017.08.021 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow;Franklin D. Tall - 通讯作者:
Franklin D. Tall
Generalized side-conditions and Moore–Mrówka
- DOI:
10.1016/j.topol.2015.10.016 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow - 通讯作者:
Alan Dow
Laver forcing and converging sequences
拉弗强迫法与收敛序列
- DOI:
10.1016/j.apal.2023.103247 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:0.600
- 作者:
Alan Dow - 通讯作者:
Alan Dow
Cozero-accessible points
- DOI:
10.1016/j.topol.2009.04.010 - 发表时间:
2009-10-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow - 通讯作者:
Alan Dow
Efimovʼs problem and Boolean algebras
- DOI:
10.1016/j.topol.2013.09.006 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow;Roberto Pichardo-Mendoza - 通讯作者:
Roberto Pichardo-Mendoza
Alan Dow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Dow', 18)}}的其他基金
31st Summer Conference on Topology and its Applications
第31届夏季拓扑及其应用会议
- 批准号:
1616393 - 财政年份:2016
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant
Set-theoretic methods and the study of compact spaces
集合论方法和紧空间的研究
- 批准号:
1501506 - 财政年份:2015
- 资助金额:
$ 9.98万 - 项目类别:
Continuing Grant
Countable Convergence in Compact Spaces
紧凑空间中的可数收敛性
- 批准号:
0554896 - 财政年份:2006
- 资助金额:
$ 9.98万 - 项目类别:
Continuing Grant
Study of Countable Convergence Conditions in Compact Spaces
紧空间中可数收敛条件的研究
- 批准号:
0103985 - 财政年份:2001
- 资助金额:
$ 9.98万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
- 批准号:
2415445 - 财政年份:2024
- 资助金额:
$ 9.98万 - 项目类别:
Continuing Grant
CAREER: Optimism in Causal Reasoning via Information-theoretic Methods
职业:通过信息论方法进行因果推理的乐观主义
- 批准号:
2239375 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Continuing Grant
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别:
Discovery Grants Program - Individual
Sheaf-Theoretic Methods in Modular Representation Theory
模表示理论中的层理论方法
- 批准号:
2202012 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant
CIF: Small: Coding-theoretic methods in discrepancy and energy optimization, with applications
CIF:小:差异和能量优化中的编码理论方法及其应用
- 批准号:
2104489 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant
Studies on singular Hermitian metrics via L2 theoretic methods and their applications to algebraic geometry
L2理论方法研究奇异埃尔米特度量及其在代数几何中的应用
- 批准号:
21K20336 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Geometric and category theoretic methods in representation theory
表示论中的几何和范畴论方法
- 批准号:
RGPIN-2017-03854 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Discovery Grants Program - Individual
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial and Representation Theoretic Methods in Number Theory
数论中的组合和表示论方法
- 批准号:
DE200101802 - 财政年份:2020
- 资助金额:
$ 9.98万 - 项目类别:
Discovery Early Career Researcher Award