Set-theoretic methods and the study of compact spaces
集合论方法和紧空间的研究
基本信息
- 批准号:1501506
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates fundamental and foundational questions in connection with convergence or limiting properties of infinite sets in an ambient space. The issues of the long-term behavior of an infinite sequence of processes or systems (however abstract) is at the core of many mathematical or physical questions. The universal setting for this investigation is known as the study of compact topological spaces. The "points" in the ambient space can represent any mathematical object in applications ranging from turbulent dynamical systems to a quantum mechanics setting. It has emerged that many natural questions are sensitive to the very foundational principles of mathematics itself. This research project pursues the resolution of such topological questions armed with the modern methods of uncovering possible dependence on the foundational axioms of mathematics. The investigator will study the influence of well-known countability properties on the structure of compact (Hausdorff) spaces. Some spaces are determined by the behavior of their converging sequences, while one of the most fundamental spaces, henceforth BetaN, the Stone-Cech compactification of the integers N, are at the opposite extreme in that it has no converging sequences whatsoever. The behavior of BetaN is heavily influenced by extra axioms of set-theory and many natural questions about spaces of functions and measures and the like, are as well. Additionally, the Banach spaces of continuous real-valued functions with domain some compact subset of BetaN will be investigated. Again set-theoretic hypotheses, mixed with additional topological properties, lead to varying behavior in the important class of compact spaces. Our study is the analysis of the interplay between the various countable convergence conditions and the axioms of set-theory that influence them. We are expecting to have to develop new techniques of constructing topological spaces as well as the refinement of forcing techniques to uncover basic combinatorial structures involved. These specific problems of longstanding will be of central focus. (1) If an infinite compact space has no converging sequence, does it contain a copy of BetaN? (2) Are the metrizable compact spaces the only ones whose diagonal is uncountably-inaccessible? (3) Is the Banach space of continuous functions on the remainder BetaN - N, like BetaN - N itself, essentially unique in certain models of set theory? (4) If the topology of a compact space is determined by converging countable sequences, is there a finite or countable bound on how many times one must iterate taking limits to capture all such limits?
本项目研究与周围空间中无限集合的收敛或极限性质有关的基本和基础问题。无限序列的过程或系统(无论多么抽象)的长期行为问题是许多数学或物理问题的核心。这种研究的普遍背景被称为紧拓扑空间的研究。周围空间中的“点”可以表示从湍流动力系统到量子力学设置的应用中的任何数学对象。许多自然问题对数学本身的基本原理都很敏感。这个研究项目追求这样的拓扑问题的解决武装与现代方法发现可能依赖于数学的基本公理。研究者将研究著名的可数性质对紧致(豪斯多夫)空间结构的影响。有些空间是由它们的收敛性决定的 序列,而最基本的空间之一,此后BetaN,整数N的Stone-Cech紧化,处于相反的极端,因为它没有收敛序列。BetaN的行为受到集合论的额外公理的严重影响,许多关于函数和测度等空间的自然问题也是如此。此外,还研究了定义域为BetaN的某个紧子集的连续实值函数的Banach空间。再一次,集合论的假设,加上额外的拓扑性质,导致了在重要的紧空间类中的不同行为。我们的研究是分析各种可数收敛条件和集合论公理之间的相互作用,影响他们。 我们期望必须开发新的技术来构建拓扑空间,以及改进强制技术来揭示所涉及的基本组合结构。这些长期存在的具体问题将成为中心焦点。(1)如果一个无限紧空间没有收敛序列,它是否包含BetaN的拷贝?(2)可度量化紧空间是唯一对角线不可达的空间吗?(3)是Banach空间的连续函数的其余部分BetaN-N,像BetaN-N本身,本质上是唯一的某些模型的集合论?(4)如果一个紧空间的拓扑是由收敛的可数序列决定的,那么对于必须求极限多少次才能得到所有的极限,是否存在一个有限的或可数的界限?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Dow其他文献
Laver forcing and converging sequences
拉弗强迫法与收敛序列
- DOI:
10.1016/j.apal.2023.103247 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:0.600
- 作者:
Alan Dow - 通讯作者:
Alan Dow
PFA(<em>S</em>)[<em>S</em>] and countably compact spaces
- DOI:
10.1016/j.topol.2017.08.021 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow;Franklin D. Tall - 通讯作者:
Franklin D. Tall
Generalized side-conditions and Moore–Mrówka
- DOI:
10.1016/j.topol.2015.10.016 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow - 通讯作者:
Alan Dow
Cozero-accessible points
- DOI:
10.1016/j.topol.2009.04.010 - 发表时间:
2009-10-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow - 通讯作者:
Alan Dow
Efimovʼs problem and Boolean algebras
- DOI:
10.1016/j.topol.2013.09.006 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:
- 作者:
Alan Dow;Roberto Pichardo-Mendoza - 通讯作者:
Roberto Pichardo-Mendoza
Alan Dow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Dow', 18)}}的其他基金
31st Summer Conference on Topology and its Applications
第31届夏季拓扑及其应用会议
- 批准号:
1616393 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Set-theoretic methods in the study of compact spaces
紧空间研究中的集合论方法
- 批准号:
0901168 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Countable Convergence in Compact Spaces
紧凑空间中的可数收敛性
- 批准号:
0554896 - 财政年份:2006
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Study of Countable Convergence Conditions in Compact Spaces
紧空间中可数收敛条件的研究
- 批准号:
0103985 - 财政年份:2001
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
- 批准号:
2415445 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
CAREER: Optimism in Causal Reasoning via Information-theoretic Methods
职业:通过信息论方法进行因果推理的乐观主义
- 批准号:
2239375 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Sheaf-Theoretic Methods in Modular Representation Theory
模表示理论中的层理论方法
- 批准号:
2202012 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CIF: Small: Coding-theoretic methods in discrepancy and energy optimization, with applications
CIF:小:差异和能量优化中的编码理论方法及其应用
- 批准号:
2104489 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Studies on singular Hermitian metrics via L2 theoretic methods and their applications to algebraic geometry
L2理论方法研究奇异埃尔米特度量及其在代数几何中的应用
- 批准号:
21K20336 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Geometric and category theoretic methods in representation theory
表示论中的几何和范畴论方法
- 批准号:
RGPIN-2017-03854 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial and Representation Theoretic Methods in Number Theory
数论中的组合和表示论方法
- 批准号:
DE200101802 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Discovery Early Career Researcher Award