Function Theory on Varieties
品种函数论
基本信息
- 批准号:0555789
- 负责人:
- 金额:$ 16.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract: The main goal of the project is to find the conditions on analgebraic variety that guarantee good estimates for analytic functionson the variety in terms of their values at real points. Particularly,it is concerned with estimates analogous to those of thePhragmen-Lindelof theorem which gives uniform upper bounds forpluri-subharmonic functions that are bounded above at the real pointsof the complex Euclidean space and satisfy an asymptotic linear growthrate. A new geometric condition, that the variety is nearlyhyperbolic, is proposed to characterize such properties. The newcondition gives a precise sense in which the variety has many realpoints, and is intermediate in strength between having a fulldimensional set of real points and admitting a projection map withreal fibers over real points. The project aims to determine the geometric properties ofalgebraic and analytic varieties in Euclidean space that determinewhen the analytic functions on the variety have properties similar tothose of entire functions on Euclidean space. It is motivated byconnections with the properties of solution operators for systems ofconstant coefficient partial differential operators and convolutionoperators on global smooth functions. The goal is to give algorithmsfor deciding whether or not specific operators admit solutions andsolution operators on spaces of infinitely differentiable functionsand distributions. The study uses methods from and contributes newresults to pluri-potential theory, the area whose relationship toanalytic functions of several complex variables is the analogue of therelationship of classical potential theory to the theory of analyticfunctions of one complex variable.
摘要:该项目的主要目标是找到止痛变化的条件,以保证分析函数在实际点处的变化的良好估计值。特别地,它涉及类似于Phragman-Lindelof定理的估计,该定理给出了复欧氏空间实点上有界且满足渐近线性增长率的多重次调和函数的一致上界。提出了一个新的几何条件,即簇是近双曲的,从而刻画了这些性质。新的条件给出了一种精确的意义,即这种变化有许多实点,并且在强度上介于拥有全维实点集和允许在实点上有实纤维的投影图之间。这个项目的目的是确定欧氏空间中代数和解析簇的几何性质,这些几何性质决定了簇上的解析函数何时具有类似于欧几里德空间上的整函数的性质。它是由常系数偏微分算子组的解算子的性质和整体光滑函数上的卷积算子的性质所推动的。目标是给出判定特定算子是否允许解和解算子在无穷可微函数空间和分布空间上的算法。这项研究使用了多势理论的方法并贡献了新的结果,多势理论与多个复变量的解析函数的关系是经典位势理论与单复变量解析函数理论的关系的类比。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
B. Alan Taylor其他文献
Each non-zero convolution operator on the entire functions admits a continuous linear right inverse
- DOI:
10.1007/bf01161635 - 发表时间:
1988-03-01 - 期刊:
- 影响因子:1.000
- 作者:
Reinhold Meise;B. Alan Taylor - 通讯作者:
B. Alan Taylor
Continuous linear right inverses for partial differential operators of order 2 and fundamental solutions in half spaces
- DOI:
10.1007/bf02568318 - 发表时间:
1996-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Reinhold Meise;B. Alan Taylor;Dietmar Vogt - 通讯作者:
Dietmar Vogt
B. Alan Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('B. Alan Taylor', 18)}}的其他基金
International Conference in Complex Analysis and Dynamics
复杂分析与动力学国际会议
- 批准号:
0639453 - 财政年份:2007
- 资助金额:
$ 16.77万 - 项目类别:
Standard Grant
Plurisubharmonic Functions on Algebraic Varieties
代数簇上的多次调和函数
- 批准号:
0070725 - 财政年份:2000
- 资助金额:
$ 16.77万 - 项目类别:
Continuing Grant
Mathematical Sciences: Group Proposal in Complex Analysis
数学科学:复分析中的小组提案
- 批准号:
9307987 - 财政年份:1993
- 资助金额:
$ 16.77万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytic and Geometric Function Theory
数学科学:解析和几何函数论
- 批准号:
9004149 - 财政年份:1990
- 资助金额:
$ 16.77万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytic and Geometric Function Theory
数学科学:解析和几何函数论
- 批准号:
8702365 - 财政年份:1987
- 资助金额:
$ 16.77万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytic and Geometric Function Theory
数学科学:解析和几何函数论
- 批准号:
8401978 - 财政年份:1984
- 资助金额:
$ 16.77万 - 项目类别:
Continuing Grant
Analytic and Geometric Function Theory
解析和几何函数论
- 批准号:
8102051 - 财政年份:1981
- 资助金额:
$ 16.77万 - 项目类别:
Continuing Grant
Levi Algebra and the Tangential Cauchy Riemann Equations
列维代数和切向柯西黎曼方程
- 批准号:
8003105 - 财政年份:1980
- 资助金额:
$ 16.77万 - 项目类别:
Standard Grant
Analytic and Geometric Function Theory
解析和几何函数论
- 批准号:
7900285 - 财政年份:1979
- 资助金额:
$ 16.77万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
- 批准号:
2401514 - 财政年份:2024
- 资助金额:
$ 16.77万 - 项目类别:
Continuing Grant
The 2nd brick-Brauer-Thrall conjecture via tau-tilting theory and representation varieties
通过 tau 倾斜理论和表示变体的第二个砖-布劳尔-萨尔猜想
- 批准号:
24K16908 - 财政年份:2024
- 资助金额:
$ 16.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combinatorics of Sharing Theorems, Stratifications, Bruhat Theory and Shimura Varieties
共享定理、分层、Bruhat 理论和 Shimura 簇的组合
- 批准号:
2247382 - 财政年份:2023
- 资助金额:
$ 16.77万 - 项目类别:
Standard Grant
CAREER: Hessenberg Varieties, Symmetric Functions, and Combinatorial Representation Theory
职业:Hessenberg 簇、对称函数和组合表示论
- 批准号:
2237057 - 财政年份:2023
- 资助金额:
$ 16.77万 - 项目类别:
Continuing Grant
Research on p-adic analytic cohomology of algebraic varieties and application to number theory
代数簇的p-adic解析上同调研究及其在数论中的应用
- 批准号:
22K13899 - 财政年份:2022
- 资助金额:
$ 16.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric questions in the theory of Shimura varieties and applications
志村品种理论中的几何问题及应用
- 批准号:
RGPIN-2019-03909 - 财政年份:2022
- 资助金额:
$ 16.77万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory related to toric varieties and its related geomety
与环面簇相关的同伦理论及其相关几何
- 批准号:
22K03283 - 财政年份:2022
- 资助金额:
$ 16.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory-based Measurement of Varieties of Power Using a Novel Semi-supervised IRT Model
使用新型半监督 IRT 模型对各种功率进行基于理论的测量
- 批准号:
2148904 - 财政年份:2022
- 资助金额:
$ 16.77万 - 项目类别:
Standard Grant
Combinatorial problems in the theory of toric varieties
环曲面簇理论中的组合问题
- 批准号:
RGPIN-2020-04335 - 财政年份:2022
- 资助金额:
$ 16.77万 - 项目类别:
Discovery Grants Program - Individual
p-adic methods in number theory: eigenvarieties and cohomology of Shimura varieties for the study of L-functions and Galois representations
数论中的 p-adic 方法:用于研究 L 函数和伽罗瓦表示的 Shimura 簇的特征簇和上同调
- 批准号:
577144-2022 - 财政年份:2022
- 资助金额:
$ 16.77万 - 项目类别:
Alliance Grants














{{item.name}}会员




