Transport Kinetics of Internal Curing Water in High Performance Concretes
高性能混凝土内养护水的传输动力学
基本信息
- 批准号:0556015
- 负责人:
- 金额:$ 22.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract 0556015With the advent of high performance concrete containing low water-to-cement ratios and typically silica fume, early age cracking has occurred with greater frequency. Autogenous shrinkage due to self-desiccation and the lowering of the internal relative humidity of concrete has been established as the primary cause of premature high performance concrete cracking and durability concerns. However, high performance concretes are increasingly used in more hostile environments, leading to an increased need for the mitigation of autogenous shrinkage. Internal curing materials can be effective for minimizing early age shrinkage. However, the underlying mechanisms of shrinkage mitigation are poorly understood. This research plan aims to answer several outstanding questions that must be addressed prior to internal curing materials being commonly used in structural concrete. To date, the lack of experimental data concerning entrained water moisture transport through a cementitious microstructure during self-desiccation has limited the understanding of the mechanisms of internal curing. To improve the current knowledge state regarding the moisture transport kinetics of internal curing, this research plan proposes the application of novel in situ microstructural characterization techniques (some of which have not been applied to cement-based materials for this purpose) to observe moisture movement through a porous cementitious matrix without introducing artifacts or damaging the sample. The techniques to be applied include: (1) Fourier Transform Infrared (FTIR) spectroscopy, (2) Raman spectroscopy, and (3) 1H Nuclear Magnetic Resonance (NMR) / 1H NMR Imaging (MRI). FTIR and Raman spectroscopy will be used to quantify and locate water in hydrating cement pastes and mortars. These novel techniques for mapping and monitoring the distribution in cement-based materials have not been previously explored, despite their obvious potential. Used in conjunction with these techniques, 1H NMR T2 relaxation time analysis and 1H NMR imaging (MRI) will be used to analyze how the water is bound within the cement matrix and the mobility of this water will be elucidated. The summation of data collected from these three in situ characterization techniques will provide an unprecedented view of the kinetics of fluid movement through cement-based materials and will lead to an improved understanding of the effectiveness of the various internal curing materials. A continuum computational model will be developed to complement the microstructural research. In addition to the characterization and modeling, physical testing of autogenous shrinkage, rheology, strength, and durability will provide a thorough understanding of the impact of internal curing materials on concretes to be used in construction practice. Data collected during this research program will provide engineers with the knowledge for practical use of internal curing materials. Furthermore, information regarding moisture transport kinetics can be applied to numerous concrete durability problems, such as chloride ingress. Educational modules will be developed to introduce middle and high school students to the various disciplines in Civil and Environmental Engineering and primary grade students to science and engineering.
摘要0556015随着含有低水灰比和典型的硅灰的高性能混凝土的出现,早期开裂以更高的频率发生。 由于自干燥和混凝土内部相对湿度的降低引起的自收缩已被确定为高性能混凝土过早开裂和耐久性问题的主要原因。然而,高性能混凝土越来越多地用于更恶劣的环境中,导致对减轻自生收缩的需求增加。 内部固化材料可以有效地使早期收缩最小化。然而,收缩缓解的基本机制知之甚少。 本研究计划的目的是回答几个突出的问题,必须解决之前,内部固化材料通常用于结构混凝土。 迄今为止,由于缺乏有关自干燥过程中夹带水通过胶凝微结构传输的实验数据,限制了对内部固化机制的理解。 为了提高目前的知识状态关于内部固化的水分传输动力学,本研究计划提出了新的原位微观结构表征技术(其中一些尚未应用于水泥基材料,用于此目的)的应用,以观察水分运动通过多孔水泥基基质,而不引入文物或损坏样品。应用的技术包括:(1)傅里叶变换红外(FTIR)光谱,(2)拉曼光谱,和(3)1H核磁共振(NMR)/ 1H NMR成像(MRI)。 FTIR和拉曼光谱将用于量化和定位水化水泥浆体和砂浆中的水。 尽管这些用于绘制和监测水泥基材料分布的新技术具有明显的潜力,但之前尚未进行过探索。 结合这些技术,1H NMR T2弛豫时间分析和1H NMR成像(MRI)将用于分析水如何结合在水泥基质中,并阐明水的流动性。 从这三种原位表征技术收集的数据的总和将提供一个前所未有的观点,通过水泥基材料的流体运动的动力学,并将导致更好地理解各种内部固化材料的有效性。 一个连续计算模型将被开发,以补充微观结构的研究。 除了表征和建模之外,自收缩、流变、强度和耐久性的物理测试将提供对内部固化材料对施工实践中使用的混凝土的影响的透彻理解。 在这项研究计划中收集的数据将为工程师提供内部固化材料的实际使用知识。 此外,有关水分迁移动力学的信息可以应用于许多混凝土耐久性问题,如氯离子侵入。 将开发教育模块,向初中和高中学生介绍土木和环境工程的各个学科,向小学生介绍科学和工程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Mohr其他文献
Benjamin Mohr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Mohr', 18)}}的其他基金
Nanoscale Characterization of Expansion Due to Delayed Ettringite Formation
钙矾石形成延迟引起的膨胀的纳米级表征
- 批准号:
1030209 - 财政年份:2010
- 资助金额:
$ 22.08万 - 项目类别:
Standard Grant
相似国自然基金
基于Hydrodynamics-Reaction Kinetics耦合模型的厌氧膨胀床反应器三相流场数值模拟及生态-水力响应机制解析
- 批准号:51078108
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Molecular mechanisms that regulate the kinetics of neurotransmitter release
调节神经递质释放动力学的分子机制
- 批准号:
DP240102418 - 财政年份:2024
- 资助金额:
$ 22.08万 - 项目类别:
Discovery Projects
In-situ X-ray Scattering Studies of Oxide Epitaxial Growth Kinetics and Dynamics
氧化物外延生长动力学和动力学的原位 X 射线散射研究
- 批准号:
2336506 - 财政年份:2024
- 资助金额:
$ 22.08万 - 项目类别:
Continuing Grant
EAGER: Enhancement of Ammonia combustion by spatiotemporal control of plasma kinetics
EAGER:通过等离子体动力学的时空控制增强氨燃烧
- 批准号:
2337461 - 财政年份:2024
- 资助金额:
$ 22.08万 - 项目类别:
Standard Grant
CAREER: Understanding the Impact of Dephosphorylation Kinetics and Adapter Specificity on Synthetic T Cell Receptor Signaling and Function
职业:了解去磷酸化动力学和接头特异性对合成 T 细胞受体信号传导和功能的影响
- 批准号:
2339172 - 财政年份:2024
- 资助金额:
$ 22.08万 - 项目类别:
Continuing Grant
CAREER: Experimental Determination and Fundamental Theory of Mesoscopic Transport and Intrinsic Kinetics in CO2 Electrocatalysis
职业:二氧化碳电催化中介观输运和本征动力学的实验测定和基础理论
- 批准号:
2339693 - 财政年份:2024
- 资助金额:
$ 22.08万 - 项目类别:
Continuing Grant
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
- 批准号:
2340085 - 财政年份:2024
- 资助金额:
$ 22.08万 - 项目类别:
Continuing Grant
Solvent Reorganization Effects on the Kinetics of Electrochemical Hydrogen Evolution
溶剂重组对电化学析氢动力学的影响
- 批准号:
2350501 - 财政年份:2024
- 资助金额:
$ 22.08万 - 项目类别:
Standard Grant
Resolving the Shortcomings in Modern NH3 Kinetics Models using Detailed Species Time Histories and Direct Rate Measurements
使用详细的物种时间历史和直接速率测量解决现代 NH3 动力学模型的缺点
- 批准号:
2308433 - 财政年份:2023
- 资助金额:
$ 22.08万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
- 批准号:
2316167 - 财政年份:2023
- 资助金额:
$ 22.08万 - 项目类别:
Fellowship Award
Collaborative Research: Overlooked Oxidation of Aqueous Alcohols: Kinetics, Mechanism, and Relevance to Water Reuse
合作研究:被忽视的水醇氧化:动力学、机制以及与水回用的相关性
- 批准号:
2304861 - 财政年份:2023
- 资助金额:
$ 22.08万 - 项目类别:
Continuing Grant