Quantum topological structures in geometric representation theory

几何表示论中的量子拓扑结构

基本信息

  • 批准号:
    1201319
  • 负责人:
  • 金额:
    $ 13.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2013-02-28
  • 项目状态:
    已结题

项目摘要

The current research pursues new directions for geometric representation theory inspired by supersymmetric gauge theory. It also proposes new approaches to Fukaya categories of Lagrangian branes with consequences for mirror symmetry. Specific research includes a Fourier analysis of character varieties in terms of character sheaves, a theory of character sheaves for loop groups via bundles on elliptic curves, and new local and homotopical models for Lagrangian intersection theory. The methods are primarily algebraic and topological, but inspired by basic patterns found in harmonic analysis and microlocal analysis. Potential applications range from Langlands dualities for the cohomology of character varieties and categorical quantizations of bundles on elliptic curves to a sheaf-theoretic reformulation of Fukaya categories without appeal to holomorphic disks.The research aims to further interactions between mathematics and physics and to educate students in the new tools of homotopical geometry. Its focus includes objects at the crossroads of gauge theory, harmonic analysis, and the Langlands program. Activities include further exposition of important but difficult topics such as quantum field theory, as well as opportunities for students in diverse areas to interact with established researchers. It is difficult to estimate the impact outside of mathematics and physics, but the research has potential links to computational topology and its applications to understanding large data sets through small samples.
目前的研究寻求新的方向的几何表示理论的启发超对称规范理论。它还提出了新的方法,福谷类别的拉格朗日膜的镜像对称的后果。具体的研究包括傅立叶分析的字符品种的字符层,理论的字符层循环组通过捆绑椭圆曲线,新的本地和同伦模型拉格朗日相交理论。该方法主要是代数和拓扑,但灵感来自谐波分析和微局部分析中发现的基本模式。潜在的应用范围从Langlands对偶的上同调的字符品种和范畴量化的椭圆曲线上的一个层理论的重新制定的福谷范畴没有上诉holomorphic disks.The研究旨在进一步之间的相互作用数学和物理和教育学生的同伦几何的新工具。它的重点包括对象在十字路口的规范理论,谐波分析,和朗兰兹计划。活动包括进一步阐述重要但困难的主题,如量子场论,以及为不同领域的学生提供与既定研究人员互动的机会。很难估计数学和物理学之外的影响,但这项研究与计算拓扑学及其在通过小样本理解大数据集方面的应用有潜在的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Nadler其他文献

A combinatorial calculation of the Landau–Ginzburg model $$M={\mathbb {C}}^{3},W=z_1 z_2 z_3$$
  • DOI:
    10.1007/s00029-016-0254-x
  • 发表时间:
    2016-08-09
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    David Nadler
  • 通讯作者:
    David Nadler

David Nadler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Nadler', 18)}}的其他基金

Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
  • 批准号:
    2401178
  • 财政年份:
    2024
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Standard Grant
Lagrangian Skeleta in Symplectic Geometry and Representation Theory
辛几何与表示论中的拉格朗日骨架
  • 批准号:
    2101466
  • 财政年份:
    2021
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Continuing Grant
Singularities and Sheaves in Symplectic Geometry and Geometric Representation Theory
辛几何和几何表示理论中的奇点和滑轮
  • 批准号:
    1802373
  • 财政年份:
    2018
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Continuing Grant
Microlocal Geometry in Gauge Theory
规范理论中的微局域几何
  • 批准号:
    1502178
  • 财政年份:
    2015
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: In and Around Theory X
FRG:协作研究:X 理论及其周边
  • 批准号:
    1342948
  • 财政年份:
    2012
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Standard Grant
Quantum topological structures in geometric representation theory
几何表示论中的量子拓扑结构
  • 批准号:
    1319287
  • 财政年份:
    2012
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: In and Around Theory X
FRG:协作研究:X 理论及其周边
  • 批准号:
    1160227
  • 财政年份:
    2012
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Standard Grant
Representation theory via topological field theory
通过拓扑场论的表示论
  • 批准号:
    0901114
  • 财政年份:
    2009
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Standard Grant
Perverse Sheaves in Representation Theory
表示论中的反常滑轮
  • 批准号:
    0600909
  • 财政年份:
    2006
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0202480
  • 财政年份:
    2002
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Fellowship Award

相似国自然基金

Orbifold Gromov-Witten理论研究
  • 批准号:
    11171174
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目
拓扑绝缘体中的强关联现象
  • 批准号:
    11047126
  • 批准年份:
    2010
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Search for novel topological quantum phases and elucidation of their electronic structures using multiple degrees of freedom in heavy electron systems
在重电子系统中使用多自由度寻找新颖的拓扑量子相并阐明其电子结构
  • 批准号:
    23H01132
  • 财政年份:
    2023
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
International collaboration on topological magnetic structures and excitations in quantum magnets using neutron scattering
利用中子散射进行量子磁体拓扑磁结构和激发的国际合作
  • 批准号:
    23KK0051
  • 财政年份:
    2023
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
  • 批准号:
    2304033
  • 财政年份:
    2023
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Standard Grant
Topological Defect Structures and Quantum Effects in Spinor Bose-Einstein Condensates
旋量玻色-爱因斯坦凝聚中的拓扑缺陷结构和量子效应
  • 批准号:
    EP/L00609X/2
  • 财政年份:
    2016
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Fellowship
Topological Defect Structures and Quantum Effects in Spinor Bose-Einstein Condensates
旋量玻色-爱因斯坦凝聚中的拓扑缺陷结构和量子效应
  • 批准号:
    EP/L00609X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Fellowship
Microwave Impedance Microscopy Study of Topological Structures of Quantum Materials
量子材料拓扑结构的微波阻抗显微镜研究
  • 批准号:
    1305731
  • 财政年份:
    2013
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Continuing Grant
Exploring Novel Electronic Structures of Topological Quantum Matter
探索拓扑量子物质的新型电子结构
  • 批准号:
    EP/K04074X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Research Grant
CAREER: Novel Quantum Hall and Correlation Physics in Topological Band Structures
职业:拓扑能带结构中的新型量子霍尔和相关物理
  • 批准号:
    1151440
  • 财政年份:
    2012
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Continuing Grant
Quantum topological structures in geometric representation theory
几何表示论中的量子拓扑结构
  • 批准号:
    1319287
  • 财政年份:
    2012
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Standard Grant
Iterated integrals, geometric structures of configuration spaces and applications to quantum topological invariants
迭代积分、配置空间的几何结构以及量子拓扑不变量的应用
  • 批准号:
    23340014
  • 财政年份:
    2011
  • 资助金额:
    $ 13.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了