Studies on Cores of Ideals and Blowup Algebras
理想核心与爆炸代数研究
基本信息
- 批准号:0600991
- 负责人:
- 金额:$ 7.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-15 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is concerned with problems from commutativealgebra and its interactions with computational algebra andalgebraic geometry. The focus of the proposal is on the theory ofblowup algebras. These algebras appear naturally in manyconstructions both in algebra and geometry. For example they arisein the process of resolution of singularities. An essential tool intheir study is the concept of reduction of an ideal. Several keyinvariants emerge in this context such as the reduction number,which among other things controls the Cohen-Macaulay property ofblowup algebras. To study all reductions at once one considers thecore of an ideal, defined as the intersection of these reductions.This object, related to coefficient, adjoint and multiplier ideals,plays a crucial role in Brian\c{c}on-Skoda type theorems. A mainthrust of this proposal is to give a combinatorial description ofthe core of monomials ideals, to clarify the connection of the corewith the reduction number, the first coefficient ideal and theadjoint or multiplier ideal, to investigate the core in arbitrarycharacteristic and to establish formulas that were previously knownonly in characteristic zero. In addition, the project also studiesother areas such as integral closures of ideals. The concepts ofintegral extensions and integral closures of rings and ideals arecentral to much of commutative algebra. One of the goals of theproject is to find a priori measures for the complexity of computingintegral closures.Often real life problems involve many unknown parameters that arerelated by equations which are impossible to solve exactly.Nevertheless, using commutative algebra methods, much valuabledescriptive information can be gained about the potential sets ofsolutions, if not the exact solutions themselves. Commutativealgebra has seen a great deal of activity and success over the pasttwo decades with the solution of important conjectures, itsapplication to diverse fields such as computer science,cryptography, coding theory, robotics, pattern recognition andtheoretical physics, and the discovery of unexpected connections toother parts of mathematics, ranging from topology to combinatoricsand from computer algebra to statistics.
这个项目关注的是交换代数的问题及其与计算代数和代数几何的相互作用。该提案的重点是理论ofblowup代数。这些代数自然地出现在代数和几何中的许多构造中。例如,它们出现在奇点的解决过程中。在他们的研究中一个重要的工具是一个理想的还原的概念。几个关键不变量出现在这种情况下,如减少数,其中除其他事项外,控制科恩-麦考利性质的爆破代数。为了同时研究所有的约化,我们考虑一个理想的核,它被定义为这些约化的交集,这个对象与系数、伴随和乘子理想有关,在BrianOn-Skoda型定理中起着至关重要的作用。这个建议的主旨是给出单项式理想的核的组合描述,阐明核与约化数、第一系数理想和伴随理想或乘子理想的联系,研究任意特征的核,建立以前只知道特征零的公式。此外,该项目还研究了理想的积分闭包等其它方面的问题。环和理想的积分扩张和积分闭包的概念是交换代数的核心。该项目的目标之一是找到计算积分闭包的复杂性的先验度量。通常,真实的生活问题涉及许多未知参数,这些参数由不可能精确求解的方程相关联。然而,使用交换代数方法,即使不是精确解本身,也可以获得关于潜在解集的许多有价值的描述信息。在过去的二十年里,交换代数在解决重要问题方面取得了巨大的成功,它在计算机科学、密码学、编码理论、机器人技术、模式识别和理论物理等不同领域的应用,以及与数学其他部分的意外联系的发现,从拓扑学到组合数学,从计算机代数到统计学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claudia Polini其他文献
<em>j</em>-Multiplicity and depth of associated graded modules
- DOI:
10.1016/j.jalgebra.2013.01.001 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:
- 作者:
Claudia Polini;Yu Xie - 通讯作者:
Yu Xie
The structure of the core of ideals
- DOI:
10.1007/pl00004502 - 发表时间:
2001-09-01 - 期刊:
- 影响因子:1.400
- 作者:
Alberto Corso;Claudia Polini;Bernd Ulrich - 通讯作者:
Bernd Ulrich
The bi-graded structure of symmetric algebras with applications to Rees rings
- DOI:
10.1016/j.jalgebra.2016.08.014 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Andrew Kustin;Claudia Polini;Bernd Ulrich - 通讯作者:
Bernd Ulrich
Claudia Polini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claudia Polini', 18)}}的其他基金
Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
- 批准号:
2201110 - 财政年份:2022
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
Studies on Local Cohomology, Derivations, Integral Dependence, and Blowup Algebras
局部上同调、导数、积分相关性和爆炸代数的研究
- 批准号:
1902033 - 财政年份:2019
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
Commutative Algebra: Set-Theoretic Complete Intersections, Local Cohomology, Free Resolutions, and Rees Rings
交换代数:集合论完全交集、局部上同调、自由解析和里斯环
- 批准号:
1601865 - 财政年份:2016
- 资助金额:
$ 7.7万 - 项目类别:
Continuing Grant
US-Brazil Planning Visit: Ubiquity of Blowup Algebras
美国-巴西计划访问:爆炸代数的普遍性
- 批准号:
0551104 - 财政年份:2006
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
Midwest Algebra, Geometry and their Interactions Conference; Notre Dame, IN; October 8-11, 2005
中西部代数、几何及其相互作用会议;
- 批准号:
0509607 - 财政年份:2005
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
Linkage and Cohen-Macaulayness of Blowup Algebras
爆炸代数的联系和 Cohen-Macaulayness
- 批准号:
0196199 - 财政年份:2000
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
Linkage and Cohen-Macaulayness of Blowup Algebras
爆炸代数的联系和 Cohen-Macaulayness
- 批准号:
9970344 - 财政年份:1999
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
相似海外基金
Investigating Magnetic Fields in High-Mass Pre-stellar Cores using ALMA
使用 ALMA 研究高质量前恒星核心的磁场
- 批准号:
24K17100 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
VOLCANIC CLASSIC: VOLCANIC eruptions and CLimAte response - Stratospheric Sulfate isotopes in Ice Cores, data assimilation, and climate sensitivity
火山经典:火山喷发和气候响应 - 冰芯中的平流层硫酸盐同位素、数据同化和气候敏感性
- 批准号:
EP/Z000645/1 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Research Grant
Dynamics of crystal mush: Insight from 2D and 3D analysis of drill cores from Kilauea Iki lava lake, Hawaii
水晶糊的动力学:夏威夷基拉韦厄艾基熔岩湖岩心 2D 和 3D 分析的见解
- 批准号:
2310195 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Continuing Grant
Collaborative Research: Using New Ice Cores from Dome C to Test the Assumption of a Constant Galactic Cosmic Ray Flux and Improve Understanding of the Holocene Methane Budget
合作研究:利用 Dome C 的新冰芯测试银河系宇宙射线通量恒定的假设并提高对全新世甲烷收支的理解
- 批准号:
2146132 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
Collaborative Research: Using New Ice Cores from Dome C to Test the Assumption of a Constant Galactic Cosmic Ray Flux and Improve Understanding of the Holocene Methane Budget
合作研究:利用 Dome C 的新冰芯测试银河系宇宙射线通量恒定的假设并提高对全新世甲烷收支的理解
- 批准号:
2146134 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
Feedback in young stellar clusters: cores and outflows in the CoCCoA survey
年轻恒星团的反馈:CoCCoA 调查中的核心和流出
- 批准号:
2883063 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Studentship
Collaborative Research: Using New Ice Cores from Dome C to Test the Assumption of a Constant Galactic Cosmic Ray Flux and Improve Understanding of the Holocene Methane Budget
合作研究:利用 Dome C 的新冰芯测试银河系宇宙射线通量恒定的假设并提高对全新世甲烷收支的理解
- 批准号:
2146133 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
Collaborative Research: Using New Ice Cores from Dome C to Test the Assumption of a Constant Galactic Cosmic Ray Flux and Improve Understanding of the Holocene Methane Budget
合作研究:利用 Dome C 的新冰芯测试银河系宇宙射线通量恒定的假设并提高对全新世甲烷收支的理解
- 批准号:
2146131 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
Collaborative Research: Circum-Antarctic Processes from Archived Marine Sediment Cores (ANTS)
合作研究:来自存档海洋沉积物核心(ANTS)的环南极过程
- 批准号:
2224681 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracing Polar Sediments with Short-lived Radioisotopes in 75 years of Arctic and Antarctic Sediment Cores
博士后奖学金:OPP-PRF:用 75 年北极和南极沉积物核心中的短寿命放射性同位素追踪极地沉积物
- 批准号:
2317997 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant