Studies on Local Cohomology, Derivations, Integral Dependence, and Blowup Algebras
局部上同调、导数、积分相关性和爆炸代数的研究
基本信息
- 批准号:1902033
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is in commutative algebra, but has also been inspired by algebraic geometry. Systems of polynomial equations in several variables occur in many applications in science and technology, for instance in engineering, computer science, cryptography, coding theory, robotics, pattern recognition, and theoretical physics. Commutative algebra and algebraic geometry are concerned with the qualitative study of such systems of polynomial equations. This project focuses on the algebraic approach. One of the goals of the project is to understand the vectors that are tangent to solution sets of systems of polynomial equations. Another objective is to find systems of polynomial equations describing a given geometric object. The latter has applications to computer graphics, algebraic statistics, and rigidity of structures. The PI intends to involve undergraduate students, graduate students, and postdoctoral fellows in her research. She will continue to organize national and international meetings. Throughout her activities, the PI will continue to promote underrepresented groups in mathematics. The first objective of this research is to relate degrees of vector fields on projective space to invariants of curves, or varieties, that they leave invariant. This is a difficult problem that has been studied for over a century, mainly from the point of view of complex analysis, dynamical systems, algebraic and differential geometry. The PI will investigate this question using tools from commutative algebra. The second objective is to find criteria for a variety in projective space to be a set-theoretic complete intersection. When there is only one non vanishing local cohomology module the PI believes that the property of being a set-theoretic complete intersection is encoded in the structure of this module. The third objective is to prove a numerical characterization of integral dependence of modules using a notion of multiplicity that arises in intersection theory. Theorems of this kind have a bearing on equisingularity theory, in fact they lead to fiber-wise numerical conditions for a family of analytic spaces to be Whitney equisingular, hence topologically trivial. The last objective is to study the implicit equations defining the graph and the image of rational maps between projective spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目是在交换代数,但也受到了代数几何的启发。多变量多项式方程组出现在科学和技术的许多应用中,例如工程学、计算机科学、密码学、编码理论、机器人学、模式识别和理论物理学。交换代数和代数几何关注的是这种多项式方程组的定性研究。这个项目的重点是代数方法。该项目的目标之一是了解与多项式方程组的解集相切的向量。另一个目标是找到描述给定几何对象的多项式方程组。后者应用于计算机图形学、代数统计和结构的刚性。PI打算让本科生、研究生和博士后研究员参与她的研究。她将继续组织国家和国际会议。在她的活动中,PI将继续促进数学代表性不足的群体。本研究的第一个目的是将射影空间上向量场的度与它们保持不变的曲线或变种的不变量联系起来。 这是一个困难的问题,已经研究了超过世纪,主要是从复分析,动力系统,代数和微分几何的观点。PI将使用交换代数的工具来研究这个问题。第二个目标是找到射影空间中的簇是集合论完全交的准则。当只有一个非零局部上同调模时,PI认为集合论完全交的性质编码在这个模的结构中。第三个目标是证明一个数值表征的积分依赖模块使用的概念,出现在交叉理论的多重性。这类定理与等奇异性理论有关系,事实上,它们导致一个解析空间族成为惠特尼等奇异的纤维数值条件,因此拓扑平凡。最后一个目标是研究定义投影空间之间的有理映射的图形和图像的隐式方程。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiplicity sequence and integral dependence
多重序列和积分依赖性
- DOI:10.1007/s00208-020-02059-5
- 发表时间:2020
- 期刊:
- 影响因子:1.4
- 作者:Polini, Claudia;Trung, Ngo Viet;Ulrich, Bernd;Validashti, Javid
- 通讯作者:Validashti, Javid
Degree bounds for local cohomology
局部上同调的度界
- DOI:10.1112/plms.12364
- 发表时间:2020
- 期刊:
- 影响因子:1.8
- 作者:Kustin, Andrew R.;Polini, Claudia;Ulrich, Bernd
- 通讯作者:Ulrich, Bernd
Quasi-cyclic modules and coregular sequences
准循环模和共正则序列
- DOI:10.1007/s00209-020-02676-5
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Hartshorne, Robin;Polini, Claudia
- 通讯作者:Polini, Claudia
Simple D -module components of local cohomology modules
局部上同调模的简单 D 模分量
- DOI:10.1016/j.jalgebra.2018.09.005
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:Hartshorne, Robin;Polini, Claudia
- 通讯作者:Polini, Claudia
Relations between the 2 × 2 minors of a generic matrix
泛型矩阵的 2××2 个次数之间的关系
- DOI:10.1016/j.aim.2021.107807
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Huang, Hang;Perlman, Michael;Polini, Claudia;Raicu, Claudiu;Sammartano, Alessio
- 通讯作者:Sammartano, Alessio
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claudia Polini其他文献
<em>j</em>-Multiplicity and depth of associated graded modules
- DOI:
10.1016/j.jalgebra.2013.01.001 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:
- 作者:
Claudia Polini;Yu Xie - 通讯作者:
Yu Xie
The structure of the core of ideals
- DOI:
10.1007/pl00004502 - 发表时间:
2001-09-01 - 期刊:
- 影响因子:1.400
- 作者:
Alberto Corso;Claudia Polini;Bernd Ulrich - 通讯作者:
Bernd Ulrich
The bi-graded structure of symmetric algebras with applications to Rees rings
- DOI:
10.1016/j.jalgebra.2016.08.014 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Andrew Kustin;Claudia Polini;Bernd Ulrich - 通讯作者:
Bernd Ulrich
Claudia Polini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claudia Polini', 18)}}的其他基金
Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
- 批准号:
2201110 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Commutative Algebra: Set-Theoretic Complete Intersections, Local Cohomology, Free Resolutions, and Rees Rings
交换代数:集合论完全交集、局部上同调、自由解析和里斯环
- 批准号:
1601865 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Studies on Cores of Ideals and Blowup Algebras
理想核心与爆炸代数研究
- 批准号:
0600991 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
US-Brazil Planning Visit: Ubiquity of Blowup Algebras
美国-巴西计划访问:爆炸代数的普遍性
- 批准号:
0551104 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Midwest Algebra, Geometry and their Interactions Conference; Notre Dame, IN; October 8-11, 2005
中西部代数、几何及其相互作用会议;
- 批准号:
0509607 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Linkage and Cohen-Macaulayness of Blowup Algebras
爆炸代数的联系和 Cohen-Macaulayness
- 批准号:
0196199 - 财政年份:2000
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Linkage and Cohen-Macaulayness of Blowup Algebras
爆炸代数的联系和 Cohen-Macaulayness
- 批准号:
9970344 - 财政年份:1999
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
- 批准号:11872210
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
miRNA-140调控软骨Local RAS对骨关节炎中骨-软骨复合单元血管增生和交互作用影响的研究
- 批准号:81601936
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Local Cohomology, Differential Operators, and Determinantal Rings
局部上同调、微分算子和行列环
- 批准号:
2101671 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Hodge Filtration on Local Cohomology and Minimal Exponents
局部上同调和最小指数的 Hodge 过滤
- 批准号:
2001132 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CAREER: New Frontiers for Frobenius, Singularity Theory, Differential Operators, and Local Cohomology
职业生涯:弗罗贝尼乌斯、奇点理论、微分算子和局部上同调的新领域
- 批准号:
1945611 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Determinantal Rings, Local Cohomology, and Tight Closure
行列式环、局部上同调和紧闭
- 批准号:
1801285 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CAREER: Local Cohomology, de Rham Cohomology and D-modules
职业:局部上同调、de Rham 上同调和 D 模
- 批准号:
1752081 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Arithmetic cohomology over local fields
局部域上的算术上同调
- 批准号:
18K03258 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Local Cohomology in Commutative Algebra and Algebraic Geometry
交换代数和代数几何中的局部上同调
- 批准号:
1700748 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Commutative Algebra: Set-Theoretic Complete Intersections, Local Cohomology, Free Resolutions, and Rees Rings
交换代数:集合论完全交集、局部上同调、自由解析和里斯环
- 批准号:
1601865 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Shimura varieties, local Shimura varieties and their etale cohomology
志村簇、当地志村簇及其 etale 上同调
- 批准号:
15H03605 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




