Midwest Algebra, Geometry and their Interactions Conference; Notre Dame, IN; October 8-11, 2005

中西部代数、几何及其相互作用会议;

基本信息

  • 批准号:
    0509607
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

The investigators are organizing the Midwest Algebra, Geometry andtheir Interactions Conference (MAGIC05) at the University of Notre Dameduring the period October 8-11, 2005. The meeting will highlight and showcase the recent work done in the areas of Algebraic Geometry and Commutative Algebra but it will also focus on their applications in and interactions with neighboring fields. Particular attention will be paid to bringing together groups, namely geometers, algebraists and applied mathematicians, who normally do not interact in conferences, and in this way generate new collaborations.The conference will be organized in a series of plenary lectures andsome shorter talks organized in parallel sessions. Among the topicsthat will be discussed by top experts at the conference, at a levelaccessible to an audience of graduate studens, we list: algebraiccombinatorics, cryptography and coding theory, liaison theory, Hilbertfunctions, Hilbert schemes, homological methods, numerical methods,Rees algebras, resolutions of singularities, singularity theory,tight closure, and vector bundles.We will strive to provide an opportunity for graduate students and researchers in postdoctoral positions to be exposed to the best recent work in these areas, and to become acquainted with the top experts as well as with their peers.We remark that in order to promote Mathematics among the diverse population of Notre Dame students as well as among the non-academic community, the conference will be enhanced by a public lecture on the importance and ubiquity of Mathematics in everyday life. The lecture will be delivered by Professor Bernd Sturmfels.
研究人员正在组织中西部代数,几何及其相互作用会议(MAGIC05)在圣母大学在2005年10月8日至11日期间。会议将突出和展示最近在代数几何和交换代数领域所做的工作,但它也将侧重于它们在相邻领域的应用和相互作用。会议将特别注意把通常不参加会议的几何学家、代数学家和应用数学家等群体聚集在一起,以这种方式产生新的合作。会议将以一系列全体会议讲座和一些平行会议的简短会谈的形式组织。在会议上将由顶级专家讨论的主题中,在研究生观众可以访问的水平上,我们列出:代数组合学,密码学和编码理论,联络理论,希尔伯特函数,希尔伯特方案,同调方法,数值方法,里斯代数,奇异性的解决方案,奇异性理论,紧封闭,和矢量束。我们将努力为研究生和博士后研究人员提供一个机会,让他们接触到这些领域的最新工作,并结识顶尖专家以及他们的同行。我们注意到,为了促进数学之间的圣母院学生的不同人口以及非学术界,会议将通过一个关于数学在日常生活中的重要性和普遍性的公开讲座来加强。讲座将由Bernd Sturmfels教授主讲。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Claudia Polini其他文献

<em>j</em>-Multiplicity and depth of associated graded modules
  • DOI:
    10.1016/j.jalgebra.2013.01.001
  • 发表时间:
    2013-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Claudia Polini;Yu Xie
  • 通讯作者:
    Yu Xie
The structure of the core of ideals
  • DOI:
    10.1007/pl00004502
  • 发表时间:
    2001-09-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Alberto Corso;Claudia Polini;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich
The bi-graded structure of symmetric algebras with applications to Rees rings
  • DOI:
    10.1016/j.jalgebra.2016.08.014
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Kustin;Claudia Polini;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich

Claudia Polini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Claudia Polini', 18)}}的其他基金

Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
  • 批准号:
    2201110
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Studies on Local Cohomology, Derivations, Integral Dependence, and Blowup Algebras
局部上同调、导数、积分相关性和爆炸代数的研究
  • 批准号:
    1902033
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Commutative Algebra: Set-Theoretic Complete Intersections, Local Cohomology, Free Resolutions, and Rees Rings
交换代数:集合论完全交集、局部上同调、自由解析和里斯环
  • 批准号:
    1601865
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Studies on Singularities
奇点研究
  • 批准号:
    1202685
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Studies on Cores of Ideals and Blowup Algebras
理想核心与爆炸代数研究
  • 批准号:
    0600991
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
US-Brazil Planning Visit: Ubiquity of Blowup Algebras
美国-巴西计划访问:爆炸代数的普遍性
  • 批准号:
    0551104
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Studies on Integrality of Ideals
理想的整体性研究
  • 批准号:
    0200200
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Linkage and Cohen-Macaulayness of Blowup Algebras
爆炸代数的联系和 Cohen-Macaulayness
  • 批准号:
    0196199
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Linkage and Cohen-Macaulayness of Blowup Algebras
爆炸代数的联系和 Cohen-Macaulayness
  • 批准号:
    9970344
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
  • 批准号:
    2412921
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302262
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Combinatorics, Algebra, and Geometry of Simplicial Complexes
单纯复形的组合学、代数和几何
  • 批准号:
    2246399
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
  • 批准号:
    2246962
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2314082
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302263
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multigraded commutative algebra and the geometry of syzygies
多级交换代数和 syzygies 几何
  • 批准号:
    2302373
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了