Studies on Integrality of Ideals

理想的整体性研究

基本信息

  • 批准号:
    0200200
  • 负责人:
  • 金额:
    $ 9.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2006-05-31
  • 项目状态:
    已结题

项目摘要

This project deals with questions in commutative algebra. While thequestions address a variety of topics, there is an underlyingcommon thread that unifies them all: the theory of integral closure.The PI, together with her collaborators, first plans to developmethods that produce the integral closure of an ideal. In joint workwith Bernd Ulrich the proposer has established that linkage is amethod for capturing integral elements over a complete intersection. Nowthe investigator wants to extend this same procedure to Gorensteinlinkage and residual intersections. Second, the PI intends to clarify theconnection between the core of an ideal and the adjoint of Lipman (or themultiplier ideal of Ein and Lazarsfeld), find an explicit formula forthe core, and compute the core of monomial ideals (a question posedby Eisenbud and Sturmfels). The investigator intends to use linkagetheory, residual intersection theory and Groebner basis theory.Third, the investigator would like to study the special fiber ring. Thisobject is very important from a geometric point of view because itencodes algebraic information on the special fiber of the blowup. The focus here is on finding conditions that force the fiber to be unmixed oreven Cohen-Macaulay. Last, the PI plans to study the Hilbert function of zero-dimensional normal ideals (an ideal is normal if all its powers are integrally closed). One of the proposer's goals is to show that all the Hilbert coefficients of such ideals are non-negative, while another goal is to characterize the vanishing of the Hilbert coefficients in terms ofthe Cohen-Macaulayness of the associated graded ring of the idealitself or of one of its powers.The proposed research is concerned with problems in commutativealgebra. On a basic level commutative algebra is about techniquesfor solving systems of polynomial equations. Commutative algebrahad a revolutionary growth in the past fifty years as it providedthe tools for understanding many problems in pure and appliedmathematics. In many applied problems, polynomial equations andhence commutative algebra play a crucial role. Applied areas wherecommutative algebra results have been used in the past includeoperations research, computer science, robotics, control theory, codingtheory and cryptography to mention a few.
这个项目研究交换代数中的问题。虽然这些问题涉及不同的主题,但有一条潜在的共同线索将它们统一起来:积分闭包理论。PI和她的合作者首先计划开发产生理想的积分闭包的方法。在与伯恩德·乌尔里希的联合工作中,提出者确立了链接是在一个完整的交叉口上捕获积分元素的一种方法。现在,研究人员希望将同样的程序扩展到Gorenstein连接和剩余交叉口。其次,PI旨在阐明理想的核心与Lipman的伴随(或Ein和Lazarsfeld的乘子理想)之间的关系,找到核心的显式公式,并计算单项理想的核心(这是Eisenbud和Sturmfels提出的一个问题)。研究人员打算使用链接论、剩余交理论和Groebner基理论。第三,研究特殊纤维环。从几何的角度来看,这个对象非常重要,因为它编码了关于吹气的特殊纤维的代数信息。这里的重点是找到迫使纤维变得不混合的条件,甚至是科恩-麦考利。最后,PI计划研究零维正规理想的希尔伯特函数(如果一个理想的所有幂都是整数闭的,那么它就是正规的)。作者的目的之一是证明这类理想的所有Hilbert系数都是非负的,而另一个目的是用理想本身或其幂的相关分次环的Cohen-Macaulay性来刻画Hilbert系数的消失。在基本层面上,交换代数是关于求解多项式方程组的技术。交换代数在过去的五十年里有了革命性的发展,因为它为理解纯数学和应用数学中的许多问题提供了工具。在许多应用问题中,多项式方程和交换代数起着至关重要的作用。过去应用交换代数结果的领域包括运筹学、计算机科学、机器人学、控制论、编码论和密码学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Claudia Polini其他文献

<em>j</em>-Multiplicity and depth of associated graded modules
  • DOI:
    10.1016/j.jalgebra.2013.01.001
  • 发表时间:
    2013-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Claudia Polini;Yu Xie
  • 通讯作者:
    Yu Xie
The structure of the core of ideals
  • DOI:
    10.1007/pl00004502
  • 发表时间:
    2001-09-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Alberto Corso;Claudia Polini;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich
The bi-graded structure of symmetric algebras with applications to Rees rings
  • DOI:
    10.1016/j.jalgebra.2016.08.014
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Kustin;Claudia Polini;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich

Claudia Polini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Claudia Polini', 18)}}的其他基金

Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
  • 批准号:
    2201110
  • 财政年份:
    2022
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Studies on Local Cohomology, Derivations, Integral Dependence, and Blowup Algebras
局部上同调、导数、积分相关性和爆炸代数的研究
  • 批准号:
    1902033
  • 财政年份:
    2019
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Commutative Algebra: Set-Theoretic Complete Intersections, Local Cohomology, Free Resolutions, and Rees Rings
交换代数:集合论完全交集、局部上同调、自由解析和里斯环
  • 批准号:
    1601865
  • 财政年份:
    2016
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Continuing Grant
Studies on Singularities
奇点研究
  • 批准号:
    1202685
  • 财政年份:
    2012
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Studies on Cores of Ideals and Blowup Algebras
理想核心与爆炸代数研究
  • 批准号:
    0600991
  • 财政年份:
    2006
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
US-Brazil Planning Visit: Ubiquity of Blowup Algebras
美国-巴西计划访问:爆炸代数的普遍性
  • 批准号:
    0551104
  • 财政年份:
    2006
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Midwest Algebra, Geometry and their Interactions Conference; Notre Dame, IN; October 8-11, 2005
中西部代数、几何及其相互作用会议;
  • 批准号:
    0509607
  • 财政年份:
    2005
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Linkage and Cohen-Macaulayness of Blowup Algebras
爆炸代数的联系和 Cohen-Macaulayness
  • 批准号:
    0196199
  • 财政年份:
    2000
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Linkage and Cohen-Macaulayness of Blowup Algebras
爆炸代数的联系和 Cohen-Macaulayness
  • 批准号:
    9970344
  • 财政年份:
    1999
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant

相似海外基金

Integrality of Stickelberger elements
斯蒂克伯格元素的完整性
  • 批准号:
    399131371
  • 财政年份:
    2018
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Research Grants
On the Integrality of the Set Covering Polyhedron
论集合覆盖多面体的完整性
  • 批准号:
    474936-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
On the Integrality of the Set Covering Polyhedron
论集合覆盖多面体的完整性
  • 批准号:
    474936-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
AF: Small: Approximate optimization: Algorithms, Hardness, and Integrality Gaps
AF:小:近似优化:算法、硬度和完整性差距
  • 批准号:
    1526092
  • 财政年份:
    2015
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
AF: Small: Optimizing with Submodular Set Functions: Algorithms, Integrality Gaps and Structural Results
AF:小:使用子模集函数进行优化:算法、完整性差距和结构结果
  • 批准号:
    1526799
  • 财政年份:
    2015
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
On the Integrality of the Set Covering Polyhedron
论集合覆盖多面体的完整性
  • 批准号:
    474936-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
AF: SMALL: Approximation Algorithms Matching Integrality Gaps for Network Design
AF:SMALL:匹配网络设计完整性差距的近似算法
  • 批准号:
    1527032
  • 财政年份:
    2015
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Integrality, Blowup Algebras and Multiplicities
完整性、爆炸代数和多重性
  • 批准号:
    0200858
  • 财政年份:
    2002
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Continuing Grant
Integrality and Combinatorial Optimization
完整性和组合优化
  • 批准号:
    8002987
  • 财政年份:
    1980
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Chance constraints with feedback and integrality (B04)
具有反馈和完整性的机会约束(B04)
  • 批准号:
    259092529
  • 财政年份:
  • 资助金额:
    $ 9.62万
  • 项目类别:
    CRC/Transregios
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了