Berkovich Spaces, Tropical Geometry, Combinatorics, and Dynamics
伯科维奇空间、热带几何、组合学和动力学
基本信息
- 批准号:1502180
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is primarily concerned with work in number theory, a branch of mathematics with important applications to cryptography and coding theory. The work also features connections to graph theory, a research area with applications to the study of large-scale networks such as the internet. The project will have a number of broader impacts, including support for high school, undergraduate, and graduate research. The PI is currently supervising two Ph.D. students from Georgia Tech and one Ph.D. student from UC Berkeley, in addition to one undergraduate research student and two high school students, each of whom is working on projects related to this project. The PI also has been involved in a number of mathematical outreach activities, including an online course on Number Theory and Cryptography for gifted high school students, and he writes a popular math blog. These activities will be continued in this project, integrating ideas from the current research whenever feasible. The project will also contribute to the dissemination of mathematical ideas through conference organization and publication of proceedings. The primary intellectual merit of the project is that it will increase our understanding of Berkovich spaces, tropical geometry, combinatorics, and complex dynamics, and unearth new relationships between these different areas of research. Berkovich spaces -- the modern incarnation of the pioneering early twentieth century work of Kurt Hensel on "p-adic numbers" -- have in recent years found applications to numerous areas of mathematical research, including algebraic geometry, number theory, and complex dynamics (where they can be used to study fractals such as the Mandelbrot set). Berkovich spaces are also intimately connected with tropical geometry, a relatively new and very active area of research with applications to number theory, algebraic geometry, statistics, biology, and physics. One can think of tropical geometry as a simplified model classical algebraic geometry in which the set of common solutions to a system of polynomial equations is replaced by the set of common solutions to a much simpler system of linear inequalities. Surprisingly -- and rather mysteriously -- the tropical simplification remembers much more information about the original solutions than one might originally expect. The investigator's previous work involved unexpected new applications of Berkovich spaces and tropical geometry, and this project will build on and significantly advance that work.
这个研究项目主要涉及数论方面的工作,数论是数学的一个分支,在密码学和编码理论方面有重要的应用。 这项工作还包括与图论的联系,这是一个应用于研究互联网等大规模网络的研究领域。 该项目将产生一系列更广泛的影响,包括对高中、本科和研究生研究的支持。 PI目前正在监督两名博士。格鲁吉亚理工学院的学生和一名博士除了一名本科研究生和两名高中生之外,他们每个人都在从事与这个项目有关的项目。 PI还参与了一些数学推广活动,包括为天才高中生开设的数论和密码学在线课程,他还写了一个受欢迎的数学博客。 这些活动将在本项目中继续进行,并在可行时纳入当前研究的想法。 该项目还将通过组织会议和出版会议记录,促进数学思想的传播。 该项目的主要智力价值是,它将增加我们对Berkovich空间,热带几何,组合数学和复杂动力学的理解,并挖掘这些不同研究领域之间的新关系。 伯科维奇空间是二十世纪早期库尔特·亨泽尔关于“p-adic数”的开创性工作的现代化身,近年来在数学研究的许多领域都有应用,包括代数几何、数论和复动力学(它们可以用来研究分形,如曼德尔布罗特集)。 伯科维奇空间也与热带几何密切相关,热带几何是一个相对较新且非常活跃的研究领域,在数论、代数几何、统计学、生物学和物理学中均有应用。 人们可以把热带几何看作是一个简化的经典代数几何模型,其中多项式方程组的公共解被一个更简单的线性不等式系统的公共解所取代。 令人惊讶的是--而且相当神秘的是--热带简化记住了比人们最初预期的更多的关于原始解决方案的信息。 研究人员以前的工作涉及布科维奇空间和热带几何的意想不到的新应用,这个项目将建立在并大大推进这项工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Baker其他文献
Molecules de recepteur du facteur de necrose tumorale a immunogenicite reduite
具有免疫原性还原的肿瘤坏死因子受体分子
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Matthew Baker;Koen Hellendoorn - 通讯作者:
Koen Hellendoorn
Fibrinogen concentrate (Fibryga®) use in cardiac surgery: a single-centre retrospective analysis of coagulation correction and blood product administration
纤维蛋白原浓缩物(Fibryga®)在心脏手术中的应用:凝血纠正和血液制品给药的单中心回顾性分析
- DOI:
10.1016/j.bja.2022.10.026 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:9.200
- 作者:
Matthew Baker;Dale Watson - 通讯作者:
Dale Watson
4.0 Å Cryo-EM Structure of the Mammalian Chaperonin: TRiC/CCT
- DOI:
10.1016/j.bpj.2009.12.1202 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Yao Cong;Matthew Baker;Joanita Jakana;David Woolford;Stefanie Reissmann;Steven J. Ludtke;Judith Frydman;Wah Chiu - 通讯作者:
Wah Chiu
PS210. The Potential for Ascorbic Acid Mediated Nephroprotection in an Animal Model of Contrast-Induced Nephropathy following Endovascular Aneurysm Repair
- DOI:
10.1016/j.jvs.2012.03.200 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:
- 作者:
Katie E. Rollins;Ayesha Noorani;Lucie Janeckova;Meryl Griffiths;Matthew Baker;Jonathan Boyle - 通讯作者:
Jonathan Boyle
Future Selves interventions: A critique of the current evidence base
未来的自我干预:对当前证据基础的批评
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Matthew Baker - 通讯作者:
Matthew Baker
Matthew Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Baker', 18)}}的其他基金
The Algebra, Blueprinted Geometry, and Combinatorics of Matroids
拟阵的代数、蓝图几何和组合学
- 批准号:
2154224 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms And Tools For Modeling Macromolecular Assemblies
合作研究:ABI 创新:大分子组装建模的算法和工具
- 批准号:
1356306 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Berkovich Spaces, Tropical Geometry, and Arithmetic Dynamics
伯科维奇空间、热带几何和算术动力学
- 批准号:
1201473 - 财政年份:2012
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Connections Between Number Theory, Algebraic Geometry, and Combinatorics
数论、代数几何和组合数学之间的联系
- 批准号:
0901487 - 财政年份:2009
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
III-CXT: Collaborative Research: Integrated Modeling of Biological Nanomachines
III-CXT:协作研究:生物纳米机器的集成建模
- 批准号:
0705474 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Spectrometric and Spectroscopic Molecular Pathology and Diagnosis
光谱分析和光谱分子病理学与诊断
- 批准号:
EP/E039855/1 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Fellowship
Analysis on Berkovich spaces and applications
Berkovich空间分析及应用
- 批准号:
0600027 - 财政年份:2006
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
相似海外基金
Complex dynamics via tropical moduli spaces
通过热带模空间的复杂动力学
- 批准号:
EP/X026612/1 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Research Grant
Tropical Methods in the Study of Moduli Spaces of Families of Curves
研究曲线族模空间的热带方法
- 批准号:
2054135 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Tropical Methods for the Tautological Intersection Theory of the Moduli Spaces of Curves
曲线模空间同义反复交集理论的热带方法
- 批准号:
2100962 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Tropical Geometry and Moduli Spaces: Satellite Conference of the 2018 International Congress of Mathematicians (ICM)
热带几何与模空间:2018年国际数学家大会(ICM)卫星会议
- 批准号:
1760342 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Algebraic and Tropical Moduli Spaces and Brill-Noether Theory
代数和热带模空间以及布里尔-诺特理论
- 批准号:
1701924 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Combinatorial and Tropical Degenerations of Classical Moduli Spaces
经典模空间的组合和热带退化
- 批准号:
1700194 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Geometry of tropical variety and homogeneous spaces
热带多样性和同质空间的几何形状
- 批准号:
25610008 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Berkovich Spaces, Tropical Geometry, and Arithmetic Dynamics
伯科维奇空间、热带几何和算术动力学
- 批准号:
1201473 - 财政年份:2012
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Algorithmic tropical intersection theory on moduli spaces
模空间的算法热带相交理论
- 批准号:
170992108 - 财政年份:2010
- 资助金额:
$ 24万 - 项目类别:
Priority Programmes