Cohomology of real-valued differential forms on Berkovich analytic spaces
Berkovich 解析空间上实值微分形式的上同调
基本信息
- 批准号:387554191
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In algebraic geometry one studies the geometry of the set of solutions of a family of polynomial equations. One method to study integral solutions of such systems of equations is Arakelov theory. It was Arakelov's great insight that to study these solutions, it is very helpful to combine algebraic geometry at the prime numbers, often called finite places, with analytic geometry over the complex numbers. It has always been the hope in Arakelov theory that one can use analytic geometry also at finite places. In particular, one needs a notion of real-valued differential forms at such a finite place. In the 1990s, Berkovich introduced suitable analytic spaces, called Berkovich analytic spaces. In 2012 Chambert-Loir and Ducros introduced smooth real-valued differential forms on Berkovich analytic spaces. Chambert-Loir and Ducros, Gubler and Künnemann as well as Liu showed first results in applying these differential forms in Arakelov theory. My own previous results include a Poincaré lemma for these differential forms, which was crucially used in Liu’s work. Further, in joint work with V. Wanner, we showed that the cohomology with respect to smooth real-valued differential forms of Mumford curves satisfies Poincaré duality and used this to completely calculate that cohomology for Mumford curves. The goal of my research project is to study these smooth real-valued differential forms in a general context and prove results about their cohomology, which are analogous to the results over the complex numbers. In particular, I want to prove that the cohomology of curves satisfies Poincaré duality. Poincaré duality is one of the basic properties of smooth differential forms over the complex numbers. It is both useful in theoretical applications as well as in concrete calculations of the cohomology. Since the definition of smooth-real valued differential forms uses tropical geometry and previous work shows direct relations to invariants in tropical geometry, studying questions in tropical geometry will also be part of the project. In said previous work, which was joint work with K. Shaw and J. Smacka, we further showed that smooth tropical varieties satisfy Poincaré duality. I want to show that more tropical spaces than currently known satisfy Poincaré duality. Also I want to prove that certain tropical spaces, and in particular smooth projective tropical varieties, satisfy symmetry in Hodge numbers.
在代数几何学中,人们研究一个多项式方程族的解的集合的几何学。研究这类方程组的积分解的一种方法是阿拉克洛夫理论。这是阿拉克洛夫的伟大洞察力,研究这些解决方案,这是非常有帮助的联合收割机代数几何在素数,通常被称为有限的地方,解析几何的复数。它一直希望在阿拉克洛夫理论,人们可以使用解析几何也在有限的地方。特别是,需要在这样一个有限的地方实值微分形式的概念。在1990年代,Berkovich引入了合适的解析空间,称为Berkovich解析空间。2012年,Chambert-Loir和Ducros在Berkovich解析空间上引入了光滑实值微分形式。Chambert-Loir和Ducros,Gubler和Künnemann以及刘展示了第一个结果在应用这些微分形式在Arakelov理论。我自己以前的结果包括这些微分形式的庞加莱引理,这在刘的工作中至关重要。此外,在与V. Wanner的联合工作中,我们证明了关于Mumford曲线的光滑实值微分形式的上同调满足庞加莱对偶,并使用它来完全计算Mumford曲线的上同调。我的研究项目的目标是在一般的背景下研究这些光滑的实值微分形式,并证明其上同调的结果,这是类似于复数的结果。特别地,我想证明曲线的上同调满足Poincaré对偶。Poincaré对偶是复数上光滑微分形式的基本性质之一。它在理论应用和具体的上同调计算中都很有用。 由于光滑实值微分形式的定义使用热带几何和以前的工作表明直接关系到热带几何中的不变量,研究热带几何中的问题也将是该项目的一部分。在所述先前的工作中,这是与K. Shaw和J. Smacka,我们进一步证明了光滑热带簇满足Poincaré对偶。 我想证明比目前已知的更多的热带空间满足庞加莱对偶。此外,我想证明,某些热带空间,特别是光滑的投影热带品种,满足对称性霍奇数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Philipp Jell其他文献
Dr. Philipp Jell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
己酸二元发酵体系中甲烷菌促进己酸生成的机制研究
- 批准号:31501461
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
体数据表达与绘制的新方法研究
- 批准号:61170206
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
mRNA推断皮肤损伤时间的多因子与多因素实验研究
- 批准号:81172902
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于孢子捕捉器和实时定量PCR技术的空气中小麦白粉菌的监测技术研究
- 批准号:31171793
- 批准年份:2011
- 资助金额:54.0 万元
- 项目类别:面上项目
Ty1-copia 类逆转座子介导的柿芽变发生的分子机制
- 批准号:31000896
- 批准年份:2010
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
玉米重金属Cd胁迫响应基因的克隆及功能研究
- 批准号:41001185
- 批准年份:2010
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
活血化瘀类中药对大鼠肝脏药物代谢酶基因表达和活性的影响
- 批准号:81060353
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
古菌Ferroplasma sp.在黄铜矿生物浸出中的生态功能
- 批准号:51074195
- 批准年份:2010
- 资助金额:37.0 万元
- 项目类别:面上项目
结外NK/T细胞淋巴瘤-鼻型异常MicroRNA表达及作用机制研究
- 批准号:81071944
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
肌肉挫伤后组织中时间相关基因表达与损伤经历时间研究
- 批准号:81001347
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROACTIVE - Optimizing real-world interventions for older adults: Community-tailored implementation of person-valued interventions through continual evaluation
积极主动 - 优化老年人的现实干预措施:通过持续评估,针对社区量身定制个人价值的干预措施
- 批准号:
459802 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Operating Grants
Multi-Valued Neuro-Fuzzy Classifier for Extracting Rules from Real-World Data
用于从现实世界数据中提取规则的多值神经模糊分类器
- 批准号:
15K00333 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Real-valued self-similar Markov processes and their applications
实值自相似马尔可夫过程及其应用
- 批准号:
EP/L002442/1 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grant
Real-valued evolutionary algorithms for constrained problems
约束问题的实值进化算法
- 批准号:
353637-2007 - 财政年份:2007
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
User-Identification Position-Sensing Asynchronous CDMA Communication System Using Finite-Length PN-Sequences
使用有限长度 PN 序列的用户识别位置传感异步 CDMA 通信系统
- 批准号:
18560378 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding real-valued evolutionary computation
了解实值进化计算
- 批准号:
298298-2004 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Understanding real-valued evolutionary computation
了解实值进化计算
- 批准号:
298298-2004 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Data Mining from Hybrid Data with Numerical Attributes and Graph Structures
具有数值属性和图结构的混合数据的数据挖掘
- 批准号:
16500084 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding real-valued evolutionary computation
了解实值进化计算
- 批准号:
298298-2004 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Application of the Axiomatic Set Theory to the Infinitary Combinatorics
公理集合论在无穷组合学中的应用
- 批准号:
12640098 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)