Imprimitive Geometries and Groups
原始几何和群
基本信息
- 批准号:0601621
- 负责人:
- 金额:$ 16.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A result of Cayley implies that every group has a faithfulrepresentations as a transitive permutation group. Many have primitivefaithful representations, for instance, all finite simplegroups. Indeed the classical simple groups act primitively on thepoints of a projective or polar space. However many groups have noprimitive faithful permutation representation, so imprimitive faithfulrepresentations must be considered. In this project Hall studiesfinite imprimitive groups that act as automorphism groups ofgeometries. He also considers the converse---description andcharacterization of geometries that come provided with a natural andnontrivial equivalence relation. Of particular interest areequivalence relations whose classes are the orbits of some nontrivialnormal subgroup, the group then naturally embedded in thecorresponding wreath product. The geometries studied andcharacterized are highly homogeneous partial linear spaces,particularly those associated with isometry groups of forms, whereimprimitivity for the group can come from degeneracy of the form. Forforms of degree greater than two, this leads to questions aboutpossible generalizations of Witt's theorem on bilinear and relatedforms.Group theory is often described as the mathematics of symmetry. Thatis, many groups are best described as collections of symmetries ofgeometric objects. Conversely many geometries are best characterizedby their associated groups, a point of view that goes back to Hilbert.Finite groups appear prominently via symmetry in many fields otherthan mathematics, for example, physics, chemistry, and computerscience. The building blocks of finite symmetry groups are the finitesimple groups and are realized as primitive permutationgroups---permutation groups that in an appropriate sense areefficient. A general finite group is then glued together from simplegroups, and its symmetry realization is imprimitive---constructed fromvarious primitive constituents. There has been great success recentlyin the description of simple groups and their primitive permuationrepresentations. Understanding of and facility with imprimitivegroups is the important next step. The project is aimed at givingelementary geometric descriptions of certain imprimitive groups andconversely characterizing and recognizing geometries starting fromproperties of an imprimitive symmetry group.
Cayley的一个结果意味着每个群作为传递置换群都有一个忠实的表示。许多群有连续的忠实表示,例如,所有有限的单群。实际上,经典单群在射影空间或极空间的点上起着互补作用。 然而,许多群没有本原的忠实置换表示,因此必须考虑非本原的忠实置换表示。 在这个项目霍尔研究有限非本原群作为自同构群的几何。 他还考虑了几何的匡威描述和表征,这些描述和表征提供了一个自然的和非平凡的等价关系。 特别感兴趣的是等价关系,其类是某些非平凡正规子群的轨道,然后该群自然嵌入相应的圈积中。 研究和表征的几何是高度齐性的部分线性空间,特别是那些与等距群的形式,其中immigrativity的组可以来自退化的形式。 对于次数大于2的形式,这就引出了关于维特定理在双线性和相关形式上的可能推广的问题。群论通常被描述为对称性的数学。 也就是说,许多组最好被描述为几何对象的对称性的集合。相反,许多几何学的最佳特征是它们的相关群,这一观点可以追溯到希尔伯特。有限群通过对称性在数学以外的许多领域中表现突出,例如物理学、化学和计算机科学。 有限对称群的构造块是有限单群,并且被实现为本原置换群-在适当意义上是有效的置换群。一般有限群是由简单群粘合在一起的,它的对称实现是非本原的--由各种本原成分构造而成。 最近在单群及其本原置换表示的刻画方面取得了巨大的成功。 了解和处理重要的群体是下一步的重要工作。 该项目旨在给出某些非本原群的初等几何描述,并从非本原对称群的性质出发,反过来刻画和认识几何。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Hall其他文献
Are ‘New Wars’ More Atrocious? Battle Severity, Civilians Killed and Forced Migration Before and After the End of the Cold War
冷战结束前后的“新战争”是否更加残酷?
- DOI:
10.1177/1354066109338243 - 发表时间:
2009 - 期刊:
- 影响因子:3.4
- 作者:
Erik Melander;Magnus Öberg;Jonathan Hall - 通讯作者:
Jonathan Hall
Pharmacokinetics and Pharmacodynamics of Antisense Oligonucleotides
反义寡核苷酸的药代动力学和药效学
- DOI:
10.1002/9781119070153.ch4 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
H. Lightfoot;A. Schneider;Jonathan Hall - 通讯作者:
Jonathan Hall
Assimilation and Perceptions of War : A Micro-Level Analysis of Ex-Yugoslavs in Sweden
同化与战争认知:对瑞典前南斯拉夫人的微观分析
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jonathan Hall - 通讯作者:
Jonathan Hall
MINA-1 and WAGO-4 are part of regulatory network coordinating germ cell death and RNAi in C. elegans
MINA-1 和 WAGO-4 是协调线虫生殖细胞死亡和 RNAi 的调控网络的一部分
- DOI:
10.1038/s41418-019-0291-z - 发表时间:
2019 - 期刊:
- 影响因子:12.4
- 作者:
Ataman Sendoel;D. Šubašić;L. Ducoli;M. Keller;Erich Michel;Ines Kohler;K. Singh;Xue Zheng;Anneke Brümmer;Jochen Imig;Shivendra Kishore;Yibo Wu;A. Kanitz;A. Kaech;Nitish Mittal;Ana M. Matia;A. Gerber;M. Zavolan;R. Aebersold;Jonathan Hall;F. Allain;M. Hengartner - 通讯作者:
M. Hengartner
Impact of RON on a heavily downsized boosted SI engine using <strong>2nd</strong> generation biofuel – A comprehensive experimental analysis
- DOI:
10.1016/j.ecmx.2024.100557 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Mohamed Mohamed;Abinash Biswal;Xinyan Wang;Hua Zhao;Anthony Harrington;Jonathan Hall - 通讯作者:
Jonathan Hall
Jonathan Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Hall', 18)}}的其他基金
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
- 批准号:
9628495 - 财政年份:1996
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Local Characterization of Some Groups, Graphs and Geometries
数学科学:某些群、图形和几何的局部表征
- 批准号:
8201509 - 财政年份:1982
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
相似海外基金
Conference: Groups, Actions, and Geometries
会议:群体、行动和几何
- 批准号:
2309427 - 财政年份:2023
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Algebraic Groups and Galois Geometries
代数群和伽罗瓦几何
- 批准号:
137522-2012 - 财政年份:2016
- 资助金额:
$ 16.5万 - 项目类别:
Discovery Grants Program - Individual
Geometries, surfaces and representations of fundamental groups
基本群的几何、曲面和表示
- 批准号:
1632493 - 财政年份:2016
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Algebraic Groups and Galois Geometries
代数群和伽罗瓦几何
- 批准号:
137522-2012 - 财政年份:2015
- 资助金额:
$ 16.5万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Groups and Galois Geometries
代数群和伽罗瓦几何
- 批准号:
137522-2012 - 财政年份:2014
- 资助金额:
$ 16.5万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Groups and Galois Geometries
代数群和伽罗瓦几何
- 批准号:
137522-2012 - 财政年份:2013
- 资助金额:
$ 16.5万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Groups and Galois Geometries
代数群和伽罗瓦几何
- 批准号:
137522-2012 - 财政年份:2012
- 资助金额:
$ 16.5万 - 项目类别:
Discovery Grants Program - Individual
Geometries of spaces on which Spinor groups act.
旋量群作用的空间几何。
- 批准号:
24540101 - 财政年份:2012
- 资助金额:
$ 16.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic and convex geometries, actions of reductive groups, topological galois theory
代数和凸几何、还原群的作用、拓扑伽罗瓦理论
- 批准号:
156833-2011 - 财政年份:2011
- 资助金额:
$ 16.5万 - 项目类别:
Discovery Grants Program - Individual