Nonlinear Problems in Geometry
几何非线性问题
基本信息
- 批准号:0603707
- 负责人:
- 金额:$ 13.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator will study a number of classical problems in Differential and Riemannian geometry that are related to mean curvature equations or have a strong connection with fully nonlinear elliptic equations such as Monge-Ampere equations in some novel way. These include the equations of prescribed mean curvature and more general curvature functions of graphs in Riemannian manifolds MxR and hypersurfaces of constant mean curvature in hyperbolic space with prescribed boundary at infinity. We also apply the methods of fully nonlinear elliptic pde to study the geometric problem of estimating from below, the total absolute Gauss curvature for convex hypersurfaces in a Cartan-Hadamard manifold.We continue to study the geometric aspects of the theory of fully nonlinear elliptic equations that arise naturally in problems involving curvature. These equations are the most useful and the most difficult to study and are broadly applicable in pure and applied mathematics, especially in image processing, optimal design, computational biology and mathematical physics. For example, the use of mean curvature flow and other curvature flows in image processing and problems of brain registration is now quite standard. We similarly expect that our current research will become a standard tool in the future.
主要研究者将研究一些经典的微分和黎曼几何问题,这些问题与平均曲率方程有关,或者与完全非线性椭圆方程(如Monge-Ampere方程)有很强的联系。其中包括黎曼流形MxR中的图的规定平均曲率方程和更一般的曲率函数,以及在无穷远处具有规定边界的双曲空间中的常平均曲率超曲面。我们还应用完全非线性椭圆型偏微分方程的方法来研究Cartan-Hadamard流形中凸超曲面的总绝对Gauss曲率的几何估计问题,我们继续研究自然出现在曲率问题中的完全非线性椭圆型方程理论的几何方面。这些方程是最有用的,也是最难研究的,在理论数学和应用数学中有着广泛的应用,特别是在图像处理、优化设计、计算生物学和数学物理中。 例如,在图像处理和大脑配准问题中使用平均曲率流和其他曲率流现在是相当标准的。我们同样希望我们目前的研究在未来成为标准工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Spruck其他文献
Convexity of 2-Convex Translating Solitons to the Mean Curvature Flow in $$\pmb {\varvec{{\mathbb {R}}}}^{n+1}$$
- DOI:
10.1007/s12220-020-00427-w - 发表时间:
2020-05-23 - 期刊:
- 影响因子:1.500
- 作者:
Joel Spruck;Liming Sun - 通讯作者:
Liming Sun
Infinite boundary value problems for surfaces of constant mean curvature
- DOI:
10.1007/bf00281471 - 发表时间:
1972-01-01 - 期刊:
- 影响因子:2.400
- 作者:
Joel Spruck - 通讯作者:
Joel Spruck
Surfaces of constant mean curvature which have a simple projection
- DOI:
10.1007/bf01187965 - 发表时间:
1972-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Robert Gulliver;Joel Spruck - 通讯作者:
Joel Spruck
Closed Minimal Hypersurfaces in $${\mathbb {S}}^5$$ with Constant S and $$A_3$$
- DOI:
10.1007/s12220-025-02129-7 - 发表时间:
2025-07-30 - 期刊:
- 影响因子:1.500
- 作者:
Joel Spruck;LIng XIao - 通讯作者:
LIng XIao
Joel Spruck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Spruck', 18)}}的其他基金
U.S.-Japan Joint Seminar: Minimal Surfaces, Geometric Analysis, and Symplectic Geometry
美日联合研讨会:极小曲面、几何分析和辛几何
- 批准号:
9714972 - 财政年份:1998
- 资助金额:
$ 13.82万 - 项目类别:
Standard Grant
Mathematical Sciences: Non-Linear Problems in Geometry and Physics
数学科学:几何和物理中的非线性问题
- 批准号:
9403918 - 财政年份:1994
- 资助金额:
$ 13.82万 - 项目类别:
Continuing Grant
U.S.-Japan Seminar: Nonlinear Problems in Geometry and Physics; March 1994; Baltimore, Maryland
美日研讨会:几何和物理中的非线性问题;
- 批准号:
9217947 - 财政年份:1993
- 资助金额:
$ 13.82万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Problems in Geometry and Physics
数学科学:几何和物理中的非线性问题
- 批准号:
8501952 - 财政年份:1985
- 资助金额:
$ 13.82万 - 项目类别:
Continuing Grant
Mathematical Sciences: Variational Problems in Geometry and Physics
数学科学:几何和物理中的变分问题
- 批准号:
8300101 - 财政年份:1983
- 资助金额:
$ 13.82万 - 项目类别:
Continuing Grant
相似海外基金
Variational Problems and Nonlinear Equations in Geometry
几何中的变分问题和非线性方程
- 批准号:
1509633 - 财政年份:2015
- 资助金额:
$ 13.82万 - 项目类别:
Standard Grant
Variational Problems and Nonlinear Equations in Geometry
几何中的变分问题和非线性方程
- 批准号:
1206661 - 财政年份:2012
- 资助金额:
$ 13.82万 - 项目类别:
Standard Grant
Nonlinear elliptic and parabolic problems in analysis and geometry
分析和几何中的非线性椭圆和抛物线问题
- 批准号:
1001116 - 财政年份:2010
- 资助金额:
$ 13.82万 - 项目类别:
Standard Grant
Variational problems and nonlinear equations from geometry
几何变分问题和非线性方程
- 批准号:
0800084 - 财政年份:2008
- 资助金额:
$ 13.82万 - 项目类别:
Standard Grant
Fully nonlinear partial differential equations and related problems in geometry
全非线性偏微分方程及几何中的相关问题
- 批准号:
0805899 - 财政年份:2008
- 资助金额:
$ 13.82万 - 项目类别:
Standard Grant
Extremal Problems in Quasiconformal Geometry and Nonlinear PDEs, an Invitation to n- Harmonic Hyperelasticity
拟共形几何和非线性偏微分方程中的极值问题,n 调和超弹性的邀请
- 批准号:
0800416 - 财政年份:2008
- 资助金额:
$ 13.82万 - 项目类别:
Continuing Grant
Nonlinear Problems in Convex and Conformal Geometry
凸几何和共形几何中的非线性问题
- 批准号:
0604638 - 财政年份:2006
- 资助金额:
$ 13.82万 - 项目类别:
Standard Grant
Some nonlinear problems in analysis and geometry
分析和几何中的一些非线性问题
- 批准号:
0300477 - 财政年份:2003
- 资助金额:
$ 13.82万 - 项目类别:
Continuing Grant