Nonlinear Problems in Geometry
几何非线性问题
基本信息
- 批准号:1206154
- 负责人:
- 金额:$ 17.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator proposes to study a number of current problems in Lorentzian and Riemannian geometry that have a strong connection with fully nonlinear elliptic equations such as Monge-Ampere equations or mean curvature equations. In particular the PI will attempt to extend his study of complete hypersurfaces of constant curvature in hyperbolic space, especially in the convex case, to the constant curvature simply connected Lorentz space forms, namely Minkowski space, de Sitter space and anti-de Sitter space. The PI will also study boundedness and monotonicity properties of positive solutions of semilinear elliptic pde's, especially in the so-called supercritical case. Global boundedness fails in general but the PI will attempt to show monotonicity of solutions in a uniform neighborhood of the boundary. He will also explore the closely related problem of uniform boundedness of semi-stable solutions. There is a close connection of this problem with the open Bernstein problem for stable minimal hypersurfaces. Finally the PI is interested in the totally degenerate complex Monge-Ampere equation described by Mabuchi, Semmes and Donaldson, which arises in the study of geodesics in the space of Kahler potentials in a fixed Kahler class.This project is aimed at developing new analytic techniques to solve problems in geometry, physics, biology and astronomy where the underlying physical and geometrical equations can be described by elliptic partial differential equations. Such techniques have been extremely successful in problems which model curvature phenomena or use curvature flows as an analytic tool. These methods have broad applications in pure and applied mathematics, especially quantum physics and cosmology, image processing, optimal design and computational biology.
主要研究者建议研究洛伦兹和黎曼几何中的一些当前问题,这些问题与完全非线性椭圆方程(如Monge-Ampere方程或平均曲率方程)有很强的联系。特别是PI将试图扩大他的研究完成超曲面的常曲率双曲空间,特别是在凸的情况下,常曲率简单连接洛伦兹空间形式,即闵可夫斯基空间,德西特空间和反德西特空间。PI还将研究半线性椭圆型方程正解的有界性和单调性,特别是在所谓的超临界情况下。整体有界性一般失败,但PI将试图在边界的均匀邻域中显示解的单调性。他还将探讨半稳定解的一致有界性的密切相关的问题。这个问题与稳定极小超曲面的开伯恩斯坦问题有密切的联系。最后,PI对Mabuchi,Semmes和唐纳森描述的完全退化的复Monge-Ampere方程感兴趣,该方程是在固定Kahler类中Kahler势空间的测地线研究中出现的。该项目旨在开发新的分析技术来解决几何,物理,生物学和天文学,其中基本的物理和几何方程可以由椭圆偏微分方程描述。这种技术在模拟曲率现象或使用曲率流作为分析工具的问题中非常成功。这些方法在理论数学和应用数学,特别是量子物理和宇宙学、图像处理、优化设计和计算生物学中有着广泛的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Spruck其他文献
Convexity of 2-Convex Translating Solitons to the Mean Curvature Flow in $$\pmb {\varvec{{\mathbb {R}}}}^{n+1}$$
- DOI:
10.1007/s12220-020-00427-w - 发表时间:
2020-05-23 - 期刊:
- 影响因子:1.500
- 作者:
Joel Spruck;Liming Sun - 通讯作者:
Liming Sun
Infinite boundary value problems for surfaces of constant mean curvature
- DOI:
10.1007/bf00281471 - 发表时间:
1972-01-01 - 期刊:
- 影响因子:2.400
- 作者:
Joel Spruck - 通讯作者:
Joel Spruck
Surfaces of constant mean curvature which have a simple projection
- DOI:
10.1007/bf01187965 - 发表时间:
1972-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Robert Gulliver;Joel Spruck - 通讯作者:
Joel Spruck
Closed Minimal Hypersurfaces in $${\mathbb {S}}^5$$ with Constant S and $$A_3$$
- DOI:
10.1007/s12220-025-02129-7 - 发表时间:
2025-07-30 - 期刊:
- 影响因子:1.500
- 作者:
Joel Spruck;LIng XIao - 通讯作者:
LIng XIao
Joel Spruck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Spruck', 18)}}的其他基金
U.S.-Japan Joint Seminar: Minimal Surfaces, Geometric Analysis, and Symplectic Geometry
美日联合研讨会:极小曲面、几何分析和辛几何
- 批准号:
9714972 - 财政年份:1998
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Non-Linear Problems in Geometry and Physics
数学科学:几何和物理中的非线性问题
- 批准号:
9403918 - 财政年份:1994
- 资助金额:
$ 17.99万 - 项目类别:
Continuing Grant
U.S.-Japan Seminar: Nonlinear Problems in Geometry and Physics; March 1994; Baltimore, Maryland
美日研讨会:几何和物理中的非线性问题;
- 批准号:
9217947 - 财政年份:1993
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Problems in Geometry and Physics
数学科学:几何和物理中的非线性问题
- 批准号:
8501952 - 财政年份:1985
- 资助金额:
$ 17.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Variational Problems in Geometry and Physics
数学科学:几何和物理中的变分问题
- 批准号:
8300101 - 财政年份:1983
- 资助金额:
$ 17.99万 - 项目类别:
Continuing Grant
相似海外基金
Variational Problems and Nonlinear Equations in Geometry
几何中的变分问题和非线性方程
- 批准号:
1509633 - 财政年份:2015
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Variational Problems and Nonlinear Equations in Geometry
几何中的变分问题和非线性方程
- 批准号:
1206661 - 财政年份:2012
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Nonlinear elliptic and parabolic problems in analysis and geometry
分析和几何中的非线性椭圆和抛物线问题
- 批准号:
1001116 - 财政年份:2010
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Variational problems and nonlinear equations from geometry
几何变分问题和非线性方程
- 批准号:
0800084 - 财政年份:2008
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Fully nonlinear partial differential equations and related problems in geometry
全非线性偏微分方程及几何中的相关问题
- 批准号:
0805899 - 财政年份:2008
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Extremal Problems in Quasiconformal Geometry and Nonlinear PDEs, an Invitation to n- Harmonic Hyperelasticity
拟共形几何和非线性偏微分方程中的极值问题,n 调和超弹性的邀请
- 批准号:
0800416 - 财政年份:2008
- 资助金额:
$ 17.99万 - 项目类别:
Continuing Grant
Nonlinear Problems in Convex and Conformal Geometry
凸几何和共形几何中的非线性问题
- 批准号:
0604638 - 财政年份:2006
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Some nonlinear problems in analysis and geometry
分析和几何中的一些非线性问题
- 批准号:
0300477 - 财政年份:2003
- 资助金额:
$ 17.99万 - 项目类别:
Continuing Grant