Defect Energies for Muonium (Hydrogen) in Semiconductors

半导体中锷(氢)的缺陷能量

基本信息

  • 批准号:
    0604501
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

****NON-TECHNICAL ABSTRACT*****This individual investigator award supports a project with a primary goal of providing an experimental test of recent predictions regarding the parameter that controls electrical properties of hydrogen when it is an impurity in semiconductors and other electronic materials. If the results confirm the theory, the research will establish a simple method to predict how the properties of new materials are impacted by hydrogen impurities. Hydrogen easily enters most materials and its defect chemistry is currently used in the semiconductor industry to extend the reliability of silicon based devices, but it can have very negative effects in some other materials, including a few being developed for use in next generation devices. Because hydrogen is highly reactive inside these materials and difficult to study, this research uses a short-lived artificially produced impurity that mimics hydrogen's behavior extremely well. An international research team will conduct these experiments at accelerator-based facilities in England, Canada and Switzerland. Undergraduates and MS students aiming for industrial careers, as well as PhD students, will receive training in research methods in the overlapping regions of physics, chemistry and materials engineering, and will gain valuable experience in a large-group research environment.****TECHNICAL ABSTRACT*****This individual investigator award supports a project seeking to establish thermodynamic energies for donor and acceptor defect-levels of hydrogen in a series of semiconductor materials. The results will provide a crucial test of recent predictions that the energy of H defects is universally pinned, and will determine that energy experimentally. The impact extends to new electronic materials and devices since H is crucial to device reliability when it passivates unwanted electrical activity of other defects, but can also introduce activity of its own. If universality is confirmed, placement of this H defect energy within the band structure of a given material is an excellent predictor of its electrical behavior. Because H is very reactive and difficult to study as an isolated impurity, this project uses its light pseudo-isotope Muonium. Experiments are conducted by an international team at accelerator-based muon-spin research facilities in the UK, Canada, and Switzerland. Undergraduate and MS students destined for industry, as well as PhD students, will receive training in research methods in overlap areas of physics, chemistry and materials engineering, and will gain valuable practical experience in a large-group environment.
* 非技术摘要 * 该个人研究者奖支持一个项目,其主要目标是提供一个实验测试,以验证最近的预测,即当氢是半导体和其他电子材料中的杂质时,控制氢的电特性的参数。 如果结果证实了理论,该研究将建立一种简单的方法来预测氢杂质如何影响新材料的性能。 氢很容易进入大多数材料,其缺陷化学目前用于半导体行业,以延长硅基器件的可靠性,但它可能对其他一些材料产生非常负面的影响,包括一些正在开发用于下一代器件的材料。 由于氢在这些材料中具有高度反应性,并且难以研究,因此这项研究使用了一种短寿命的人工制造的杂质,它非常好地模拟了氢的行为。一个国际研究小组将在英国、加拿大和瑞士的加速器设施中进行这些实验。 本科生和旨在工业职业的MS学生,以及博士生,将在物理,化学和材料工程的重叠区域接受研究方法的培训,并将在大型研究环境中获得宝贵的经验。技术摘要 * 这个个人研究奖支持一个寻求建立一系列半导体材料中氢的施主和受主缺陷水平的热力学能量的项目。 这些结果将为最近的预测提供一个关键的测试,即H缺陷的能量是普遍固定的,并将通过实验确定能量。 这种影响延伸到新的电子材料和器件,因为H在钝化其他缺陷的不必要的电活动时对器件可靠性至关重要,但也可以引入自己的活动。 如果普遍性得到证实,在给定材料的能带结构中放置这种H缺陷能量是其电学行为的极好预测。 由于氢的反应性很强,很难作为一种孤立的杂质进行研究,因此该项目使用了它的轻伪同位素Muonium。 实验由一个国际团队在英国、加拿大和瑞士的基于加速器的μ子自旋研究设施进行。本科生和MS学生注定要工业,以及博士生,将接受在物理,化学和材料工程的重叠领域的研究方法的培训,并将获得宝贵的实践经验,在一个大集团的环境。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roger Lichti其他文献

Roger Lichti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roger Lichti', 18)}}的其他基金

Muonium in Wurtzite Structured Semiconductors
纤锌矿结构半导体中的锷
  • 批准号:
    0102862
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Muonium Dynamics in Semiconductors
合作研究:半导体中的μ动力学
  • 批准号:
    9623823
  • 财政年份:
    1996
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
U.S.-Western Europe Regional Cooperative Research on Muoniumin Semiconductors
美国-西欧缪尼半导体区域合作研究
  • 批准号:
    9214741
  • 财政年份:
    1993
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Direct Measurement of Interfacial Energies in Ceramics
陶瓷界面能的直接测量
  • 批准号:
    2414106
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Bond Dissociation Energies and Electronic Structure of Small Transition Metal and Lanthanide Molecules
过渡金属和镧系小分子的键解离能和电子结构
  • 批准号:
    2305293
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MultidiSciplinary and MultIscale approach for coupLed processes induced by geo-Energies
地能引起的耦合过程的多学科和多尺度方法
  • 批准号:
    EP/X032752/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Construction of a predictive model for antigen-antibody interaction energies using the FMO database
使用FMO数据库构建抗原抗体相互作用能量的预测模型
  • 批准号:
    23K18192
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
UNderwater IntervenTion for offshore renewable Energies (UNITE)
近海可再生能源水下干预 (UNITE)
  • 批准号:
    EP/X024806/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Next Generation Silicon-Carbide MOSFETs for Electrification and Renewable Energies
用于电气化和可再生能源的下一代碳化硅 MOSFET
  • 批准号:
    10072835
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant for R&D
Experimental Particle Physics Research at High Energies
高能实验粒子物理研究
  • 批准号:
    2309945
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Elucidating Ring Opening Metathesis Copolymerization Thermodynamics of Monomers with Dissimilar Ring Strain Energies
阐明不同环应变能单体的开环复分解共聚热力学
  • 批准号:
    2305099
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Absolute binding free energies for virtual screening: A novel implementation of quantum mechanics/molecular mechanics (QM/MM) for FEP that allows substantial sampling and a significant quantum region
用于虚拟筛选的绝对结合自由能:用于 FEP 的量子力学/分子力学 (QM/MM) 的新颖实现,允许大量采样和重要的量子区域
  • 批准号:
    10759829
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Investigating Hadron Structure at Low and Medium Energies
研究低能和中能的强子结构
  • 批准号:
    SAPIN-2022-00025
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Subatomic Physics Envelope - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了