The Kinetic Theory of Waves and Reactive-Diffusive Fronts
波和反应扩散前沿的动力学理论
基本信息
- 批准号:0604687
- 负责人:
- 金额:$ 24.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Numerical simulation of the microscopic description of wave propagation in random media is still beyond reach of modern computers: a typical propagation distance may be of the order of hundreds of wavelengths and as many correlation lengths of random fluctuations. This necessitates the use of various approximate macroscopic models, of which kinetic equations constitute an important class. However, the passage from microscopic wave equations to large-scale kinetics is a complicated problem in itself. The goal of the first part of the project is two-fold: on one hand, to develop new tools and better understanding of kinetic limits, and second, to consider the applications of kinetic methods to the inverse problems of wave propagation, finding sources and scatterers in a cluttered environment. The second part of the project investigates the qualitative behavior of solutions of reaction-diffusion-advection equations, with the main focus on the effect of a fluid flow. We will investigate the interaction of the mixing, dynamic, and geometric properties of the underlying flow and the effects of diffusion and reaction. The problem becomes especially complex in the situations where the feedback from the reaction process on the fluid flow cannot be ignored. The project addresses the quantitative study of the transport of the energy, momentum, and the reactants in a Boussinesq reactive system.brbrThis project carries out mathematical studies of wave propagation in complex media and of reaction-diffusion equations. The mathematical models are relevant to several branches of science, ranging from biomedical imaging questions to geophysics, fluid dynamics, and astrophysics. Imaging in a cluttered environment, whether it is a human body, earth interior, or foliage, is inherently unstable because of media complexity. An objective of this project is to develop imaging methods that are less sensitive to unpredictable fluctuations of the clutter. We will strive to understand the universality and the limits of applicability of macroscopic models and develop inversion algorithms that arise from the macroscopic rather than detailed microscopic models and that are therefore inherently more stable with respect to fluctuations of the environment. Another area of this project concerns the mathematical description of the effect of a fluid flow on chemical reactions. Turbulent fluid flow plays an important role in many reaction phenomena: it may drastically enhance the rate of reaction, leading to higher efficiency, or, in some situations, extinguish the chemical process. The mathematical theory is far from complete, due to the inherent complexity and richness of the phenomena. The project will address these issues in simpler mathematical models to illuminate the mechanisms present in the full problem.
对随机介质中波传播的微观描述进行数值模拟仍然是现代计算机无法达到的:典型的传播距离可能是数百个波长的数量级,以及随机波动的相关长度。这就需要使用各种近似的宏观模型,其中动力学方程构成了一个重要的类。 然而,从微观波动方程到大尺度动力学的过渡本身就是一个复杂的问题。 该项目的第一部分的目标是双重的:一方面,开发新的工具和更好地了解动力学的限制,第二,考虑动力学方法的应用,波传播的逆问题,在混乱的环境中找到源和散射体。该项目的第二部分研究反应-扩散-对流方程的解的定性行为,主要关注流体流动的影响。我们将研究底层流动的混合、动力学和几何性质的相互作用以及扩散和反应的影响。 在反应过程对流体流动的反馈不能被忽略的情况下,问题变得特别复杂。 该项目旨在对Boussinesq反应系统中的能量、动量和反应物的传输进行定量研究。brbr该项目对复杂介质中的波传播和反应扩散方程进行数学研究。 数学模型与科学的几个分支有关,从生物医学成像问题到生物物理学,流体动力学和天体物理学。 在杂乱的环境中成像,无论是人体、地球内部还是树叶,由于媒体的复杂性,都是固有的不稳定。 这个项目的一个目标是开发成像方法,是不太敏感的不可预知的波动的杂波。 我们将努力理解宏观模型的普遍性和适用性的限制,并开发从宏观而不是详细的微观模型中产生的反演算法,因此相对于环境的波动本质上更稳定。 该项目的另一个领域涉及流体流动对化学反应影响的数学描述。湍流在许多反应现象中起着重要的作用:它可以大大提高反应速率,从而提高效率,或者在某些情况下,熄灭化学过程。 由于现象本身的复杂性和丰富性,数学理论还远未完成。 该项目将在更简单的数学模型中解决这些问题,以阐明整个问题中存在的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Ryzhik其他文献
Leonid Ryzhik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Ryzhik', 18)}}的其他基金
Branching Processes, Random Partial Differential Equations and Applications
分支过程、随机偏微分方程及其应用
- 批准号:
2205497 - 财政年份:2022
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Long Time Behavior for Partial Differential Equations in Random Media
随机介质中偏微分方程的长时间行为
- 批准号:
1910023 - 财政年份:2019
- 资助金额:
$ 24.65万 - 项目类别:
Continuing Grant
Reaction-Diffusion, Propagation, and Modeling
反应扩散、传播和建模
- 批准号:
1725046 - 财政年份:2017
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Waves and fronts in heterogeneous media
异构媒体中的波和前沿
- 批准号:
1613603 - 财政年份:2016
- 资助金额:
$ 24.65万 - 项目类别:
Continuing Grant
Waves, Particle Transport and Fronts in Heterogeneous Media
异质介质中的波、粒子输运和前沿
- 批准号:
1311903 - 财政年份:2013
- 资助金额:
$ 24.65万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1158938 - 财政年份:2012
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Proposal for a Five-Day Conference: Challenges for Nonlinear PDE and Analysis
为期五天的会议提案:非线性偏微分方程和分析的挑战
- 批准号:
1100754 - 财政年份:2011
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Collaborative Research: Waves and Fronts in Heterogeneous Media
合作研究:异构媒体中的波与前沿
- 批准号:
1016106 - 财政年份:2009
- 资助金额:
$ 24.65万 - 项目类别:
Continuing Grant
Collaborative Research: Waves and Fronts in Heterogeneous Media
合作研究:异构媒体中的波与前沿
- 批准号:
0908507 - 财政年份:2009
- 资助金额:
$ 24.65万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
- 批准号:
1015831 - 财政年份:2009
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Collapse, Rogue Waves, and their Applications: From Theory to Computation and Beyond
合作研究:塌陷、异常波浪及其应用:从理论到计算及其他
- 批准号:
2204702 - 财政年份:2022
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Collaborative Research: Collapse, Rogue Waves, and their Applications: From Theory to Computation and Beyond
合作研究:塌陷、异常波浪及其应用:从理论到计算及其他
- 批准号:
2204782 - 财政年份:2022
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
RUI: Dispersive Shock Waves in Nonlinear Lattices: Theory to Application
RUI:非线性晶格中的色散冲击波:理论到应用
- 批准号:
2107945 - 财政年份:2021
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Verification of a novel theory of electron scattering caused by plasma waves
验证等离子体波引起的电子散射的新理论
- 批准号:
21K13979 - 财政年份:2021
- 资助金额:
$ 24.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: A Unified Theory of Crack Nucleation and Growth for Materials Subjected to Repetitive Surface Acoustic Waves and Dynamic Impacts
合作研究:重复表面声波和动态冲击下材料裂纹成核和扩展的统一理论
- 批准号:
2132528 - 财政年份:2021
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Collaborative Research: A Unified Theory of Crack Nucleation and Growth for Materials Subjected to Repetitive Surface Acoustic Waves and Dynamic Impacts
合作研究:重复表面声波和动态冲击下材料裂纹成核和扩展的统一理论
- 批准号:
2132551 - 财政年份:2021
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Thermo-hydrodynamic state measurement of phase change slurry by ultrasonic waves: Theory of acoustic phase diagram
超声波测量相变浆料的热流体力学状态:声相图理论
- 批准号:
19K04226 - 财政年份:2019
- 资助金额:
$ 24.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An application of the 3-D seakeeping theory for a study on fluctuation mechanism of flow fields around rotating propeller in waves and development of its simple estimation method
应用3维耐波性理论研究波浪中旋转螺旋桨周围流场脉动机理及其简单估计方法的发展
- 批准号:
19H02369 - 财政年份:2019
- 资助金额:
$ 24.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




