Waves, Particle Transport and Fronts in Heterogeneous Media
异质介质中的波、粒子输运和前沿
基本信息
- 批准号:1311903
- 负责人:
- 金额:$ 34.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-10-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractNumerical simulation of the microscopic details of wave propagation in random media is still beyond reach of modern computers: a typical propagation distance may be of the order of hundreds of wavelengths and as many correlation lengths of random fluctuations. This necessitates the use of various approximate macroscopic effective models in practice. The passage from the stochastic microscopic equations modeling a particular physical system to the large-scale model is a highly non-trivial problem in itself. The goal of the first part of the project is to develop new tools and better understanding of such effective limits, especially in the regime when random media have long range correlations that lead to multiple temporal and spatial scales for various physical phenomena. The second part of the project investigates the qualitative behavior of solutions of reaction-diffusion equations, in particular, those that arise in stochastic particle systems, such as branching Brownian motion, and other Brunet-Derrida systems. Another set of problems involves reaction-diffusion equations that arise in biology, such as chemotactic models, and ecology involving population dynamics in heterogenous environments. This project carries out mathematical studies of physical systems, and wave propagation in cluttered environments and of reaction-diffusion processes. These studies are relevant to several branches of science, ranging from biomedical imaging questions to geophysics, fluid dynamics, and biology. Imaging in a cluttered environment, whether it is a human body, earth interior, or foliage, is inherently unstable because of media complexity. One objective of this project is to develop imaging methods that are less sensitive to unpredictable fluctuations of the clutter. Another area of this project concerns the mathematical description of the mixing effects of a fluid flow on chemical and biological reactions. Turbulent fluid flow plays an important role in many reaction phenomena: it may drastically enhance the rate of reaction, leading to higher efficiency, or, in some situations, extinguish the chemical process. The project will address these issues in simpler mathematical models to illuminate the mechanisms present in the full problem.
波在随机介质中传播的微观细节的数值模拟仍然是现代计算机所无法达到的:典型的传播距离可能是数百个波长的数量级和随机波动的相关长度。这就需要在实际中使用各种近似的宏观有效模型。从模拟特定物理系统的随机微观方程到大尺度模型的过渡本身就是一个非常重要的问题。该项目的第一部分的目标是开发新的工具,更好地理解这种有效的限制,特别是在政权时,随机介质具有长程相关性,导致多种时间和空间尺度的各种物理现象。该项目的第二部分研究反应扩散方程解的定性行为,特别是那些在随机粒子系统中出现的解,如分支布朗运动和其他Brunet-Derrida系统。 另一组问题涉及生物学中出现的反应扩散方程,如趋化模型,以及涉及异质环境中种群动力学的生态学。该项目进行物理系统的数学研究,以及波在杂乱环境中的传播和反应扩散过程。 这些研究与科学的几个分支有关,从生物医学成像问题到生物物理学,流体动力学和生物学。在杂乱的环境中成像,无论是人体、地球内部还是树叶,由于媒体的复杂性,都是固有的不稳定。这个项目的一个目标是开发成像方法,是不太敏感的不可预知的波动的杂波。 该项目的另一个领域涉及流体流动对化学和生物反应的混合效应的数学描述。湍流在许多反应现象中起着重要的作用:它可以大大提高反应速率,从而提高效率,或者在某些情况下,熄灭化学过程。该项目将在更简单的数学模型中解决这些问题,以阐明整个问题中存在的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Ryzhik其他文献
Leonid Ryzhik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Ryzhik', 18)}}的其他基金
Branching Processes, Random Partial Differential Equations and Applications
分支过程、随机偏微分方程及其应用
- 批准号:
2205497 - 财政年份:2022
- 资助金额:
$ 34.78万 - 项目类别:
Standard Grant
Long Time Behavior for Partial Differential Equations in Random Media
随机介质中偏微分方程的长时间行为
- 批准号:
1910023 - 财政年份:2019
- 资助金额:
$ 34.78万 - 项目类别:
Continuing Grant
Reaction-Diffusion, Propagation, and Modeling
反应扩散、传播和建模
- 批准号:
1725046 - 财政年份:2017
- 资助金额:
$ 34.78万 - 项目类别:
Standard Grant
Waves and fronts in heterogeneous media
异构媒体中的波和前沿
- 批准号:
1613603 - 财政年份:2016
- 资助金额:
$ 34.78万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1158938 - 财政年份:2012
- 资助金额:
$ 34.78万 - 项目类别:
Standard Grant
Proposal for a Five-Day Conference: Challenges for Nonlinear PDE and Analysis
为期五天的会议提案:非线性偏微分方程和分析的挑战
- 批准号:
1100754 - 财政年份:2011
- 资助金额:
$ 34.78万 - 项目类别:
Standard Grant
Collaborative Research: Waves and Fronts in Heterogeneous Media
合作研究:异构媒体中的波与前沿
- 批准号:
1016106 - 财政年份:2009
- 资助金额:
$ 34.78万 - 项目类别:
Continuing Grant
Collaborative Research: Waves and Fronts in Heterogeneous Media
合作研究:异构媒体中的波与前沿
- 批准号:
0908507 - 财政年份:2009
- 资助金额:
$ 34.78万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
- 批准号:
1015831 - 财政年份:2009
- 资助金额:
$ 34.78万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
- 批准号:
0854952 - 财政年份:2009
- 资助金额:
$ 34.78万 - 项目类别:
Standard Grant
相似国自然基金
环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
- 批准号:11905220
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
- 批准号:21902147
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
- 批准号:30560052
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Deep Particle Algorithms and Advection-Reaction-Diffusion Transport Problems
深层粒子算法与平流反应扩散传输问题
- 批准号:
2309520 - 财政年份:2023
- 资助金额:
$ 34.78万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 34.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a group of particle transport codes connecting the wall, peripheral, and core regions including dependence of ro-vibrational states of molecular hydrogen
开发一组连接壁、外围和核心区域的粒子传输代码,包括分子氢的旋转振动状态的依赖性
- 批准号:
23K03362 - 财政年份:2023
- 资助金额:
$ 34.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deep Learning for Understanding Multiscale Particle Transport Phenomena Inside Fuel Cells
用于理解燃料电池内部多尺度粒子传输现象的深度学习
- 批准号:
22KF0042 - 财政年份:2023
- 资助金额:
$ 34.78万 - 项目类别:
Grant-in-Aid for JSPS Fellows
AGS-PRF: Elucidating the Channels of Energy Transport and Particle Energization in Collisionless Plasmas
AGS-PRF:阐明无碰撞等离子体中能量传输和粒子赋能的通道
- 批准号:
2318252 - 财政年份:2023
- 资助金额:
$ 34.78万 - 项目类别:
Fellowship Award
Multiscale modelling of fluid–particle transport in porous media
多孔介质中流体颗粒输运的多尺度建模
- 批准号:
DE220100763 - 财政年份:2022
- 资助金额:
$ 34.78万 - 项目类别:
Discovery Early Career Researcher Award
Improved computational models for particle transport in turbulent wall-bounded flows
改进的湍流壁面流动中粒子输运的计算模型
- 批准号:
RGPIN-2022-04981 - 财政年份:2022
- 资助金额:
$ 34.78万 - 项目类别:
Discovery Grants Program - Individual
CAREER: The Impact of Extracellular Polymeric Substances on Particle Transport in Aquatic Environments
职业:细胞外聚合物物质对水生环境中颗粒传输的影响
- 批准号:
2241045 - 财政年份:2022
- 资助金额:
$ 34.78万 - 项目类别:
Continuing Grant
Sheath and dust particle transport in plasmas
等离子体中的鞘层和尘埃粒子传输
- 批准号:
RGPIN-2019-04333 - 财政年份:2022
- 资助金额:
$ 34.78万 - 项目类别:
Discovery Grants Program - Individual
Experimental and theoretical study of hydrodynamics of solid particle transport in small scale
小尺度固体颗粒输运的流体动力学实验与理论研究
- 批准号:
RGPIN-2017-05272 - 财政年份:2022
- 资助金额:
$ 34.78万 - 项目类别:
Discovery Grants Program - Individual