Reaction-Diffusion, Propagation, and Modeling

反应扩散、传播和建模

基本信息

  • 批准号:
    1725046
  • 负责人:
  • 金额:
    $ 1.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

This award provides support for the U.S. graduate students, postdoctoral fellows, and junior researchers to participate in the conference "Reaction-Diffusion, Propagation, Modelling" that will take place at the Institut Henri Poincare, November 20-24, 2017, in Paris, France. Reaction-diffusion equations serve as a mathematical description of many phenomena in nature and society. The emphasis of the conference is on novel mathematical models in theoretical biology, economics and social sciences. The list of invited speakers at the conference includes many prominent applied scientists and applied mathematicians, as well as leading experts in the area of partial differential equations (PDE). The principal goals of the conference are to further the synergistic interaction between the applied and theoretical approaches, review some very important recent achievements in nonlinear PDE and their applications, and to discuss the future directions of this scientific area. The list of speakers comprises a mix of generations, from highly prominent senior mathematicians to junior researchers.  Six out of the nineteen confirmed speakers are female mathematicians.  The conference discussions will cover a broad spectrum of topics: Fronts in unconventional models in life and social sciences, nonlocal diffusion equations, dynamics of accelerating fronts, fronts and singularities in evolutionary biology, and nonlocal models in fluid mechanics, among others. The relatively small number of talks over five days will give the participants a time to have deeper discussions, than for standard, more compressed conference schedules. This will facilitate interactions and collaboration between the applied scientists and relatively pure mathematicians. The conference will provide for junior American participants an invaluable experience of interacting with their European peers and with senior scientists, thus broadening their professional training. The conference website is http://reactiondiffusion.weebly.com/
该奖项为美国研究生,博士后研究员和初级研究人员提供支持,参加将于2017年11月20日至24日在法国巴黎举行的“反应扩散,传播,建模”会议。反应扩散方程是自然界和社会中许多现象的数学描述。会议的重点是理论生物学、经济学和社会科学中的新型数学模型。会议的受邀演讲者名单包括许多杰出的应用科学家和应用数学家,以及偏微分方程(PDE)领域的领先专家。会议的主要目标是进一步加强应用和理论方法之间的协同作用,回顾非线性偏微分方程及其应用的一些非常重要的最新成果,并讨论这一科学领域的未来发展方向。从非常杰出的高级数学家到初级研究人员。十九位确认发言者中有六位是女性数学家。会议讨论将涵盖广泛的主题范围:生命和社会科学中的非常规模型前沿,非局部扩散方程,加速前沿的动力学,进化生物学中的前沿和奇点,以及流体力学中的非局部模型等。在五天内举行的会谈数量相对较少,这将使与会者有时间进行更深入的讨论,而不是标准的、更压缩的会议日程。 这将促进应用科学家和相对纯数学家之间的互动和合作。会议将为美国青年与会者提供与欧洲同行和资深科学家互动的宝贵经验,从而扩大他们的专业培训。会议网址为http://reactiondiffusion.weebly.com/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonid Ryzhik其他文献

Leonid Ryzhik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonid Ryzhik', 18)}}的其他基金

Branching Processes, Random Partial Differential Equations and Applications
分支过程、随机偏微分方程及其应用
  • 批准号:
    2205497
  • 财政年份:
    2022
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Standard Grant
Long Time Behavior for Partial Differential Equations in Random Media
随机介质中偏微分方程的长时间行为
  • 批准号:
    1910023
  • 财政年份:
    2019
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Continuing Grant
Waves and fronts in heterogeneous media
异构媒体中的波和前沿
  • 批准号:
    1613603
  • 财政年份:
    2016
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Continuing Grant
Waves, Particle Transport and Fronts in Heterogeneous Media
异质介质中的波、粒子输运和前沿
  • 批准号:
    1311903
  • 财政年份:
    2013
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
  • 批准号:
    1158938
  • 财政年份:
    2012
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Standard Grant
Proposal for a Five-Day Conference: Challenges for Nonlinear PDE and Analysis
为期五天的会议提案:非线性偏微分方程和分析的挑战
  • 批准号:
    1100754
  • 财政年份:
    2011
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Waves and Fronts in Heterogeneous Media
合作研究:异构媒体中的波与前沿
  • 批准号:
    1016106
  • 财政年份:
    2009
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Waves and Fronts in Heterogeneous Media
合作研究:异构媒体中的波与前沿
  • 批准号:
    0908507
  • 财政年份:
    2009
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
  • 批准号:
    1015831
  • 财政年份:
    2009
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
  • 批准号:
    0854952
  • 财政年份:
    2009
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Standard Grant

相似国自然基金

带drift-diffusion项的抛物型偏微分方程组的能控性与能稳性
  • 批准号:
    61573012
  • 批准年份:
    2015
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
Levy过程驱动的随机Fast-Diffusion方程的Harnack不等式及其应用
  • 批准号:
    11126079
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Analysis of propagation phenomena and singularity of the logarithmic diffusion equation
对数扩散方程的传播现象和奇异性分析
  • 批准号:
    20K03708
  • 财政年份:
    2020
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Propagation phenomena in reaction-diffusion equations involving nonlinear diffusion and multi-stable reaction term
涉及非线性扩散和多稳态反应项的反应扩散方程中的传播现象
  • 批准号:
    20K03709
  • 财政年份:
    2020
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of propagation mechanism of reaction-diffusion wave in heterogeneous media in vivo
体内异质介质中反应扩散波传播机制的研究
  • 批准号:
    15KT0104
  • 财政年份:
    2015
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Burning Invariant Manifolds: The Geometry of Front Propagation in Advection-Reaction-Diffusion Dynamics
燃烧不变流形:平流-反应-扩散动力学中前沿传播的几何形状
  • 批准号:
    1201236
  • 财政年份:
    2012
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Standard Grant
Signal propagation on deformable patterns with reaction-diffusion system
使用反应扩散系统在可变形图案上传播信号
  • 批准号:
    20700213
  • 财政年份:
    2008
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Mathematical studies for the reaction-diffusion models of the biological invasion and propagation phenomena
生物入侵和繁殖现象反应扩散模型的数学研究
  • 批准号:
    18540144
  • 财政年份:
    2006
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Diffusion driven pattern formation and signal propagation in spatially complex excitable media
空间复杂可激发介质中扩散驱动的图案形成和信号传播
  • 批准号:
    DP0345572
  • 财政年份:
    2003
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Discovery Projects
Studies on rapid molecular diffusion and charge propagation in a quasi-solid of nanostructured polymers
纳米结构聚合物准固体中快速分子扩散和电荷传播的研究
  • 批准号:
    15550101
  • 财政年份:
    2003
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical Simulation of the Gas Flow Accompanied by Pressure Wave Propagation and Diffusion Phenomena in Internal Combustion Engines
内燃机中气体流动伴随压力波传播和扩散现象的数值模拟
  • 批准号:
    04650186
  • 财政年份:
    1992
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Wave Propagation, Conservation Relations and Particle Diffusion in Inhomogeneous Plasmas
非均匀等离子体中的波传播、守恒关系和粒子扩散
  • 批准号:
    8514978
  • 财政年份:
    1986
  • 资助金额:
    $ 1.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了