Waves and fronts in heterogeneous media
异构媒体中的波和前沿
基本信息
- 批准号:1613603
- 负责人:
- 金额:$ 31.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project carries out mathematical studies of physical systems in heterogeneous environments. Such systems are ubiquitous in nature, and include examples as diverse as light propagation through the atmosphere, seismic waves in the Earth following an earthquake, stock market fluctuations, and medical imaging problems. The mathematical modeling of such problems involves partial differential equations with highly oscillatory coefficients. Typically, such problems involve a multitude of temporal and spatial scales: a typical propagation distance may be of the order of hundreds or thousands of wavelengths and as many correlation lengths of random fluctuations. Numerical simulation of the microscopic details of the solutions is beyond the reach even for the most powerful modern computers. For the prediction and understanding of behavior of these multi-scale system, it is imperative to use various approximate macroscopic effective models that preserve the salient features of the processes without keeping track of all microscopic details. The overarching goal of the project is to develop a better understanding of the validity of such macroscopic models. The goal of the first part of the project is to develop new tools and better understanding of the effective limits in wave propagation, with the focus on random media with long-range correlations that lead to multiple temporal and spatial scales for various physical phenomena. The second part of the proposal investigates the qualitative behavior of the solutions of reaction-diffusion equations with stochastic perturbations. Stochastic fluctuations and heterogeneities play a significant effect on front propagation properties, leading to new types of solutions and asymptotic behavior. One goal of the project will be to understand the connection between the stochastic reaction-diffusion problems and the recent theory of the regularity structures.
该项目对异构环境中的物理系统进行数学研究。这样的系统在自然界中是普遍存在的,并且包括诸如通过大气的光传播、地震后地球中的地震波、股票市场波动和医学成像问题等各种各样的示例。此类问题的数学建模涉及具有高度振荡系数的偏微分方程。通常,这样的问题涉及大量的时间和空间尺度:典型的传播距离可以是数百或数千个波长的量级,以及随机波动的许多相关长度。即使是最强大的现代计算机,也无法对解的微观细节进行数值模拟。为了预测和理解这些多尺度系统的行为,必须使用各种近似的宏观有效模型,这些模型保留了过程的显着特征,而无需跟踪所有微观细节。该项目的总体目标是更好地理解这种宏观模型的有效性。该项目第一部分的目标是开发新的工具,更好地了解波传播的有效极限,重点是具有长程相关性的随机介质,这些介质导致各种物理现象的多个时间和空间尺度。第二部分研究了具有随机扰动的反应扩散方程解的定性行为。 随机涨落和非均匀性对波前传播性质有重要影响,导致新的解类型和渐近行为。该项目的一个目标是了解随机反应扩散问题与最近的正则结构理论之间的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Ryzhik其他文献
Leonid Ryzhik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Ryzhik', 18)}}的其他基金
Branching Processes, Random Partial Differential Equations and Applications
分支过程、随机偏微分方程及其应用
- 批准号:
2205497 - 财政年份:2022
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Long Time Behavior for Partial Differential Equations in Random Media
随机介质中偏微分方程的长时间行为
- 批准号:
1910023 - 财政年份:2019
- 资助金额:
$ 31.2万 - 项目类别:
Continuing Grant
Reaction-Diffusion, Propagation, and Modeling
反应扩散、传播和建模
- 批准号:
1725046 - 财政年份:2017
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Waves, Particle Transport and Fronts in Heterogeneous Media
异质介质中的波、粒子输运和前沿
- 批准号:
1311903 - 财政年份:2013
- 资助金额:
$ 31.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1158938 - 财政年份:2012
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Proposal for a Five-Day Conference: Challenges for Nonlinear PDE and Analysis
为期五天的会议提案:非线性偏微分方程和分析的挑战
- 批准号:
1100754 - 财政年份:2011
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Collaborative Research: Waves and Fronts in Heterogeneous Media
合作研究:异构媒体中的波与前沿
- 批准号:
1016106 - 财政年份:2009
- 资助金额:
$ 31.2万 - 项目类别:
Continuing Grant
Collaborative Research: Waves and Fronts in Heterogeneous Media
合作研究:异构媒体中的波与前沿
- 批准号:
0908507 - 财政年份:2009
- 资助金额:
$ 31.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
- 批准号:
1015831 - 财政年份:2009
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
- 批准号:
0854952 - 财政年份:2009
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
相似海外基金
Characterizing Pareto fronts: Trade-offs in the yeast growth cycle constrain adaptation
表征帕累托前沿:酵母生长周期的权衡限制了适应
- 批准号:
10749856 - 财政年份:2024
- 资助金额:
$ 31.2万 - 项目类别:
Collaborative Research: EPIIC: Managing Culture Change on Two Fronts: Strengthening Our Capacity to Develop Partnerships
合作研究:EPIIC:从两个方面管理文化变革:加强我们发展伙伴关系的能力
- 批准号:
2331373 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Collaborative Research: EPIIC: Managing Culture Change on Two Fronts: Strengthening Our Capacity to Develop Partnerships
合作研究:EPIIC:从两个方面管理文化变革:加强我们发展伙伴关系的能力
- 批准号:
2331372 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Control of dual displacement fronts by non-Newtonian reactive flow for improved sweep efficiency
通过非牛顿反应流控制双位移前沿以提高波及效率
- 批准号:
22KF0132 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
How is the topography of major orogenic fronts sustained and where is plate convergence accommodated on intermediate timescales: the collisional Himalayan orogen?
主要造山锋面的地形是如何维持的,以及板块汇聚在中间时间尺度上的位置:碰撞的喜马拉雅造山带?
- 批准号:
511446535 - 财政年份:2022
- 资助金额:
$ 31.2万 - 项目类别:
Heisenberg Grants
Offshore wind farm effects on ocean fronts and seabirds
海上风电场对海滨和海鸟的影响
- 批准号:
2755127 - 财政年份:2022
- 资助金额:
$ 31.2万 - 项目类别:
Studentship
Mathematical analysis of vorticity fronts
涡度锋面的数学分析
- 批准号:
2594616 - 财政年份:2021
- 资助金额:
$ 31.2万 - 项目类别:
Studentship
Quantifying vertical and lateral ocean transport due to fronts and eddies
量化锋面和涡流引起的垂直和横向海洋运输
- 批准号:
DP210102745 - 财政年份:2021
- 资助金额:
$ 31.2万 - 项目类别:
Discovery Projects
Structures of Extratropical Cyclones Accompanied by Sprit Fronts and The Formation Mechanism of Their Associated Torrential Rainfall
锋面伴随的温带气旋的结构及其相关暴雨的形成机制
- 批准号:
20K14553 - 财政年份:2020
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: The Role of Coastal Fronts in Mixing and Ventilating Coastal Waters
合作研究:海岸锋在混合和通风沿海水域中的作用
- 批准号:
2022738 - 财政年份:2020
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant