Statistical Problems in Detectability

可检测性的统计问题

基本信息

  • 批准号:
    0604736
  • 负责人:
  • 金额:
    $ 9.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-15 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

The PI will study statistical problems in detectability, which is to answer whether a detection problem is solvable for a given data set (e.g., an imagery). There will be two major components: (a) what is the fundamental threshold to determine when a detection task is doable, and (b) when a detection problem is solvable, what is the adequate order of computational complexity to solve it. Based on the current state-of-the-art, the PI proposes to derive more accurate results, and to compare different formulations and their influence on the theory of detectability. The proposed works have three main thrusts. (1) Limit distributions of the test statistics at the asymptotic rate of detectability will be derived. This will advancethe detectability theory. (2) Application-driven models will be adopted in the detectability theory. In many cases, these application-driven models are complex, and the adaptation and the possible generalization of the detectability theory are not trivial. (3) Influences of different statistical formulations on the theory of detectability will be characterized. The proposed works are rooted in two of PI's prior works: (1) the project of multiscale geometric detection (MGD), which derived the asymptotic rate of detectability for detecting a range of geometric objects, and (2) the project of multiscale significance run algorithms (MSRA) and theconsequent results on limit distributions. In the second project, after knowing the asymptotic rate in MSRA, the limit distribution of the test statistic is derive (in a simpler situation), so that the detectability right at the asymptotic rate is characterized. The limit distribution also explains the robustness of the detectionalgorithm that have been demonstrated in simulations.Detection is a fundamental problem in many image processing applications. Some applications include (1) particle detection in cryo-EM images, which plays an important role in automated reconstruction of a molecular structure, (2) automatic target recognition (ATR), which has many military and civil surveillance applications, and (3) crater detection in geomorphology, which is utilized in extraterrestrial mapping and planetary chronological research. Proposed theoretical problems are fundamental in theseapplications. Graduate students will get involved.
PI将研究可检测性中的统计问题,即回答检测问题是否可用于给定的数据集(例如,图像)。将有两个主要组成部分:(a)什么是基本的阈值,以确定何时检测任务是可行的,(B)当一个检测问题是可解决的,什么是适当的计算复杂性的顺序来解决it.Based上的当前国家的最先进的,PI建议,以获得更准确的结果,并比较不同的配方和它们的可检测性理论的影响。拟议的工程有三个主要目标。(1)极限分布的检验统计量的渐近检测率将被推导出来。这将推进可探测性理论。(2)可探测性理论将采用应用驱动模型。在许多情况下,这些应用驱动的模型是复杂的,可检测性理论的适应和可能的推广并不是微不足道的。(3)将描述不同统计公式对可检测性理论的影响。所提出的工作是植根于两个PI的先前的作品:(1)项目的多尺度几何检测(MGD),推导出检测范围的几何对象的可检测性的渐近速率,和(2)项目的多尺度显着运行算法(MSRA)和极限分布的对比结果。第二个方案是在已知MSRA的渐近速率后,(在较简单的情况下)得到检验统计量的极限分布,从而刻画了在渐近速率下的可检测性。极限分布也解释了检测算法的鲁棒性,并在仿真中得到了验证。检测是许多图像处理应用中的一个基本问题。一些应用包括(1)低温EM图像中的粒子检测,其在分子结构的自动重建中起重要作用,(2)自动目标识别(ATR),其具有许多军事和民用监视应用,以及(3)地貌学中的陨石坑检测,其用于地外测绘和行星年代学研究。提出的理论问题是这些应用中的基础。研究生将参与其中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoming Huo其他文献

A promising new tool for fault diagnosis of railway wheelset bearings: SSO-based Kurtogram.
一种很有前途的铁路轮对轴承故障诊断新工具:基于 SSO 的 Kurtogram。
  • DOI:
    10.1016/j.isatra.2021.09.009
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Cai Yi;Yiqun Li;Xiaoming Huo;Kwok-Leung Tsui
  • 通讯作者:
    Kwok-Leung Tsui
A single interval based classifier
  • DOI:
    10.1007/s10479-011-0886-3
  • 发表时间:
    2011-05-15
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Heeyoung Kim;Xiaoming Huo;Jianjun Shi
  • 通讯作者:
    Jianjun Shi
Universal Consistency of Wide and Deep ReLU Neural Networks and Minimax Optimal Convergence Rates for Kolmogorov-Donoho Optimal Function Classes
宽深 ReLU 神经网络的普遍一致性和 Kolmogorov-Donoho 最优函数类的 Minimax 最优收敛率
  • DOI:
    10.48550/arxiv.2401.04286
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hyunouk Ko;Xiaoming Huo
  • 通讯作者:
    Xiaoming Huo
Optimal sampling and curve interpolation via wavelets
  • DOI:
    10.1016/j.aml.2013.03.002
  • 发表时间:
    2013-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Heeyoung Kim;Xiaoming Huo
  • 通讯作者:
    Xiaoming Huo
Asymptotic Behavior of Adversarial Training Estimator under ?∞-Perturbation
?∞-摄动下对抗训练估计器的渐近行为
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiling Xie;Xiaoming Huo
  • 通讯作者:
    Xiaoming Huo

Xiaoming Huo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoming Huo', 18)}}的其他基金

Theoretical Guarantees of Statistical Methodologies Involving Nonconvex Objectives and the Difference-Of-Convex-Functions Algorithms
涉及非凸目标的统计方法和凸函数差分算法的理论保证
  • 批准号:
    2015363
  • 财政年份:
    2020
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
CHE/DMS Innovation Lab: Learning the Power of Data in Chemistry
CHE/DMS 创新实验室:了解化学数据的力量
  • 批准号:
    1848701
  • 财政年份:
    2018
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
TRIPODS: Transdisciplinary Research Institute for Advancing Data Science (TRIAD)
TRIPODS:推进数据科学跨学科研究所 (TRIAD)
  • 批准号:
    1740776
  • 财政年份:
    2017
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Continuing Grant
Computational and Communication Efficient Distributed Statistical Methods with Theoretical Guarantees
有理论保证的计算和通信高效的分布式统计方法
  • 批准号:
    1613152
  • 财政年份:
    2016
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Continuing Grant
Workshop on the Algorithmic, Mathematical, and Statistical Foundations of Data Science
数据科学的算法、数学和统计基础研讨会
  • 批准号:
    1637436
  • 财政年份:
    2016
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Fundamentals and Applications of Connect-the-Dots Methods
点连线方法的基础知识和应用
  • 批准号:
    0700152
  • 财政年份:
    2007
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
ACT SGER: Locating Sparse Events in High Speed Stream Data, with a Focus on Statistical Analysis
ACT SGER:定位高速流数据中的稀疏事件,重点是统计分析
  • 批准号:
    0346307
  • 财政年份:
    2003
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Collaborative Research: a Focused Research Group on Multiscale Geometric Analysis -- Theory, Tools, and Applications
协作研究:多尺度几何分析的重点研究小组——理论、工具和应用
  • 批准号:
    0140587
  • 财政年份:
    2002
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Fifth North American Meeting of New Researchers in Statistics and Probability
第五届北美统计和概率新研究者会议
  • 批准号:
    0096528
  • 财政年份:
    2001
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant

相似海外基金

Problems in Ramsey theory
拉姆齐理论中的问题
  • 批准号:
    2582036
  • 财政年份:
    2025
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Studentship
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
  • 批准号:
    2348475
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
  • 批准号:
    DP240101473
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
  • 批准号:
    FT230100154
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    ARC Future Fellowships
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
  • 批准号:
    23K25504
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
  • 批准号:
    2400014
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
  • 批准号:
    2349382
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了