Theoretical Guarantees of Statistical Methodologies Involving Nonconvex Objectives and the Difference-Of-Convex-Functions Algorithms
涉及非凸目标的统计方法和凸函数差分算法的理论保证
基本信息
- 批准号:2015363
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will extend the statistical literature that involves nonconvex optimization to contemporary models. In many contemporary machine learning and/or artificial intelligence applications, deep learning and relevant neural network models are utilized. Extending these theories to other contemporary frameworks can potentially lead to a theoretical foundation for modern techniques such as deep learning. The research project has great potential to make a significant impact on the broad scientific community, who have the needs of performing inferences for their enormous data. Besides scholarly publications and presentations, the research will lead to new teaching modules in statistics and machine learning courses. Ph.D. students will be supported and exposed to asymptotic theory and computational algorithms. New toolboxes will be developed and made available online. Packages are developed so that engineering students (including undergraduates) at Georgia Tech and other universities can use them in their course projects (for example, the undergraduate senior design projects at the School of Industrial and Systems Engineering at Georgia Tech). The PI has organized many influential workshops in the past, including one on the foundation of deep learning, and will continue doing so. Specific aims include the following. The research work will extend the theory on the statistical properties of potentially fully neural network models to some other neural network models under different structures, such as the convolutional neural networks, to explore the relation between the inferential property and the neural network architecture. The project is to derive the theoretical guarantees of statistical estimators that are based on nonconvex optimization in more general settings. The PI will explore the possibility to carrying out similar analysis in neural network-based models. Statistical model selection can be utilized in identification of partial differential equations. The project is to establish the corresponding statistical theory and uncover the related practical implication. A set of open-source software products along with related documentation will be generated, to make our work conveniently reproducible. Existing tools (such as GitHub.com or equivalents) will be utilized to disseminate these tools. The applicability and need of the new methods will be explored in a wide spectrum of application domains. Inference techniques with nonconvex objective functions is a fundamental problem in many contemporary techniques, including the neural network based deep learning methodology. This project will contribute to this research. There are evident societal needs for inference from large datasets, and the results of this project can have many applications. The project will contribute to the statistical literature by exploring a new research frontier in statistical sciences. Our work is interdisciplinary and can bridge the communities of optimization and statistics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目将扩展涉及非凸优化的统计文献到当代模型。在许多当代机器学习和/或人工智能应用中,使用了深度学习和相关的神经网络模型。将这些理论扩展到其他当代框架中,可能会为深度学习等现代技术提供理论基础。该研究项目具有巨大的潜力,可以对广泛的科学界产生重大影响,因为科学界需要对其庞大的数据进行推断。除了学术出版物和演讲,这项研究还将在统计学和机器学习课程中引入新的教学模块。博士生将被支持并接触到渐近理论和计算算法。将开发新的工具箱并在网上提供。开发的软件包是为了让佐治亚理工学院和其他大学的工程专业学生(包括本科生)可以在他们的课程项目中使用它们(例如,佐治亚理工学院工业与系统工程学院的本科高级设计项目)。PI过去组织了许多有影响力的研讨会,包括深度学习基础研讨会,并将继续这样做。具体目标包括以下内容。本研究将把潜在全神经网络模型的统计性质理论扩展到其他不同结构的神经网络模型,如卷积神经网络,以探索推理性质与神经网络结构之间的关系。该项目是在更一般的情况下推导基于非凸优化的统计估计器的理论保证。PI将探索在基于神经网络的模型中进行类似分析的可能性。统计模型选择可以用于偏微分方程的辨识。本课题旨在建立相应的统计理论,揭示相关的现实意义。将生成一组开源软件产品以及相关文档,使我们的工作方便地再现。现有的工具(如GitHub.com或同等工具)将被用来传播这些工具。新方法的适用性和需求将在广泛的应用领域进行探索。基于非凸目标函数的推理技术是许多当代技术中的一个基本问题,包括基于神经网络的深度学习方法。这个项目将有助于这项研究。社会对大型数据集的推断有明显的需求,这个项目的结果可以有很多应用。该项目将通过探索统计科学的新研究前沿,为统计文献做出贡献。我们的工作是跨学科的,可以桥梁社区的优化和统计。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotic Theory of \(\boldsymbol \ell _1\) -Regularized PDE Identification from a Single Noisy Trajectory
(oldsymbol ell _1) 的渐近理论 - 来自单个噪声轨迹的正则化偏微分方程辨识
- DOI:10.1137/21m1398884
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:He, Yuchen;Suh, Namjoon;Huo, Xiaoming;Kang, Sung Ha;Mei, Yajun
- 通讯作者:Mei, Yajun
A unifying framework of high-dimensional sparse estimation with dierence-of-convex (DC) regularization
具有凸差 (DC) 正则化的高维稀疏估计的统一框架
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:5.7
- 作者:Cao, Shanshan;Huo, Xiaoming;Pang, Jong-Shi
- 通讯作者:Pang, Jong-Shi
A network model that combines latent factors and sparse graphs
- DOI:10.1002/sam.11492
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Namjoon Suh;X. Huo;Eric Heim;Lee M. Seversky
- 通讯作者:Namjoon Suh;X. Huo;Eric Heim;Lee M. Seversky
What can cluster analysis offer in investing? - Measuring structural changes in the investment universe
聚类分析可以为投资提供什么?
- DOI:10.1016/j.iref.2020.09.004
- 发表时间:2021
- 期刊:
- 影响因子:4.5
- 作者:Sim, Min Kyu;Deng, Shijie;Huo, Xiaoming
- 通讯作者:Huo, Xiaoming
A Statistically and Numerically Efficient Independence Test Based on Random Projections and Distance Covariance
- DOI:10.3389/fams.2021.779841
- 发表时间:2017-01
- 期刊:
- 影响因子:0
- 作者:Cheng Huang;X. Huo
- 通讯作者:Cheng Huang;X. Huo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoming Huo其他文献
A promising new tool for fault diagnosis of railway wheelset bearings: SSO-based Kurtogram.
一种很有前途的铁路轮对轴承故障诊断新工具:基于 SSO 的 Kurtogram。
- DOI:
10.1016/j.isatra.2021.09.009 - 发表时间:
2021-09 - 期刊:
- 影响因子:7.3
- 作者:
Cai Yi;Yiqun Li;Xiaoming Huo;Kwok-Leung Tsui - 通讯作者:
Kwok-Leung Tsui
A single interval based classifier
- DOI:
10.1007/s10479-011-0886-3 - 发表时间:
2011-05-15 - 期刊:
- 影响因子:4.500
- 作者:
Heeyoung Kim;Xiaoming Huo;Jianjun Shi - 通讯作者:
Jianjun Shi
Universal Consistency of Wide and Deep ReLU Neural Networks and Minimax Optimal Convergence Rates for Kolmogorov-Donoho Optimal Function Classes
宽深 ReLU 神经网络的普遍一致性和 Kolmogorov-Donoho 最优函数类的 Minimax 最优收敛率
- DOI:
10.48550/arxiv.2401.04286 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hyunouk Ko;Xiaoming Huo - 通讯作者:
Xiaoming Huo
Optimal sampling and curve interpolation via wavelets
- DOI:
10.1016/j.aml.2013.03.002 - 发表时间:
2013-07-01 - 期刊:
- 影响因子:
- 作者:
Heeyoung Kim;Xiaoming Huo - 通讯作者:
Xiaoming Huo
Asymptotic Behavior of Adversarial Training Estimator under ?∞-Perturbation
?∞-摄动下对抗训练估计器的渐近行为
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yiling Xie;Xiaoming Huo - 通讯作者:
Xiaoming Huo
Xiaoming Huo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoming Huo', 18)}}的其他基金
CHE/DMS Innovation Lab: Learning the Power of Data in Chemistry
CHE/DMS 创新实验室:了解化学数据的力量
- 批准号:
1848701 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
TRIPODS: Transdisciplinary Research Institute for Advancing Data Science (TRIAD)
TRIPODS:推进数据科学跨学科研究所 (TRIAD)
- 批准号:
1740776 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Computational and Communication Efficient Distributed Statistical Methods with Theoretical Guarantees
有理论保证的计算和通信高效的分布式统计方法
- 批准号:
1613152 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Workshop on the Algorithmic, Mathematical, and Statistical Foundations of Data Science
数据科学的算法、数学和统计基础研讨会
- 批准号:
1637436 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Fundamentals and Applications of Connect-the-Dots Methods
点连线方法的基础知识和应用
- 批准号:
0700152 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
ACT SGER: Locating Sparse Events in High Speed Stream Data, with a Focus on Statistical Analysis
ACT SGER:定位高速流数据中的稀疏事件,重点是统计分析
- 批准号:
0346307 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: a Focused Research Group on Multiscale Geometric Analysis -- Theory, Tools, and Applications
协作研究:多尺度几何分析的重点研究小组——理论、工具和应用
- 批准号:
0140587 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Fifth North American Meeting of New Researchers in Statistics and Probability
第五届北美统计和概率新研究者会议
- 批准号:
0096528 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
- 批准号:
2237322 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CDS&E: Collaborative Research: Scalable Nonparametric Learning for Massive Data with Statistical Guarantees
CDS
- 批准号:
2005779 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Scalable Nonparametric Learning for Massive Data with Statistical Guarantees
CDS
- 批准号:
1821157 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Scalable Nonparametric Learning for Massive Data with Statistical Guarantees
CDS
- 批准号:
1821183 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Statistical and Computational Guarantees of Three Siblings: Expectation-Maximization, Mean-Field Variational Inference, and Gibbs Sampling
三兄弟的统计和计算保证:期望最大化、平均场变分推理和吉布斯采样
- 批准号:
1811740 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
AF: Medium: Dropping Convexity: New Algorithms, Statistical Guarantees and Scalable Software for Non-convex Matrix Estimation
AF:中:降低凸性:用于非凸矩阵估计的新算法、统计保证和可扩展软件
- 批准号:
1564000 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Efficient Algorithms with Statistical Guarantees for High Dimensional Time Series
高维时间序列具有统计保证的高效算法
- 批准号:
1612549 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Computational and Communication Efficient Distributed Statistical Methods with Theoretical Guarantees
有理论保证的计算和通信高效的分布式统计方法
- 批准号:
1613152 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Scalable Nonconvex Optimization with Statistical Guarantees for Information Computing in High Dimensions
CIF:小型:协作研究:具有统计保证的可扩展非凸优化,用于高维信息计算
- 批准号:
1617815 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Scalable Nonconvex Optimization with Statistical Guarantees for Information Computing in High Dimensions
CIF:小型:协作研究:具有统计保证的可扩展非凸优化,用于高维信息计算
- 批准号:
1617801 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant