Computational and Communication Efficient Distributed Statistical Methods with Theoretical Guarantees

有理论保证的计算和通信高效的分布式统计方法

基本信息

  • 批准号:
    1613152
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

In many contemporary data-analysis settings, it is expensive and/or infeasible to assume that the entire data set is available at a central location. In recent works of computational mathematics and machine learning, great strides have been made in distributed optimization and distributed learning (i.e., machine learning). On the other hand, classical statistical methodology, theory, and computation are typically based on the assumption that the entire data are available at a central location; this is a significant shortcoming in modern statistical knowledge. The statistical methodology and theory for distributed inference are underdeveloped. The PI will develop new distributed statistical methods that are computation and communication efficient. He will study the theoretical guarantees of these distributed statistical estimators. The applicability and need of these methods in a wide spectrum of application domains will be explored and demonstrated. This research can have impacts in healthcare, supply chain industries, retail and services, and many more. Based on recent works in applied mathematics and machine learning, the PI is to explore theory, algorithms, and applications of statistical procedures that are developed for distributed data and aggregated inference (i.e., distributed inference), with considerations on the storage, computational complexity, and statistical properties of the relevant estimators. The project will develop practical models, statistical theory, and computationally efficient and provably correct algorithms that can help scientists to conduct more effective distributed data analysis. Statistical properties of these methods will be thoroughly studied, including analysis of asymptotic properties, simulation studies in finite sample cases, and establishment of effectiveness in some real applications. PhD students will be involved in the research. Course modules will be developed and made available publicly.
在许多当代数据分析环境中,假设整个数据集在一个中心位置可用是昂贵的和/或不可行的。在最近的计算数学和机器学习的工作中,分布式优化和分布式学习(即机器学习)取得了长足的进步。另一方面,经典的统计方法、理论和计算通常基于所有数据都集中在一个位置的假设;这是现代统计知识中的一个重大缺陷。分布式推理的统计方法和理论还不够发达。PI将开发计算和通信高效的新的分布式统计方法。他将研究这些分布统计估计量的理论保证。将探索和论证这些方法在广泛的应用领域中的适用性和必要性。这项研究可能会对医疗保健、供应链行业、零售和服务等许多领域产生影响。基于应用数学和机器学习的最新工作,PI将探索为分布式数据和聚合推理(即分布式推理)开发的统计过程的理论、算法和应用,并考虑相关估计器的存储、计算复杂性和统计特性。该项目将开发实用的模型、统计理论和计算效率高且可证明是正确的算法,以帮助科学家进行更有效的分布式数据分析。将深入研究这些方法的统计性质,包括渐近性质的分析,有限样本情况下的模拟研究,以及在一些实际应用中的有效性的建立。博士生将参与这项研究。课程模块将被开发并公开提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoming Huo其他文献

A promising new tool for fault diagnosis of railway wheelset bearings: SSO-based Kurtogram.
一种很有前途的铁路轮对轴承故障诊断新工具:基于 SSO 的 Kurtogram。
  • DOI:
    10.1016/j.isatra.2021.09.009
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Cai Yi;Yiqun Li;Xiaoming Huo;Kwok-Leung Tsui
  • 通讯作者:
    Kwok-Leung Tsui
A single interval based classifier
  • DOI:
    10.1007/s10479-011-0886-3
  • 发表时间:
    2011-05-15
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Heeyoung Kim;Xiaoming Huo;Jianjun Shi
  • 通讯作者:
    Jianjun Shi
Universal Consistency of Wide and Deep ReLU Neural Networks and Minimax Optimal Convergence Rates for Kolmogorov-Donoho Optimal Function Classes
宽深 ReLU 神经网络的普遍一致性和 Kolmogorov-Donoho 最优函数类的 Minimax 最优收敛率
  • DOI:
    10.48550/arxiv.2401.04286
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hyunouk Ko;Xiaoming Huo
  • 通讯作者:
    Xiaoming Huo
Optimal sampling and curve interpolation via wavelets
  • DOI:
    10.1016/j.aml.2013.03.002
  • 发表时间:
    2013-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Heeyoung Kim;Xiaoming Huo
  • 通讯作者:
    Xiaoming Huo
Asymptotic Behavior of Adversarial Training Estimator under ?∞-Perturbation
?∞-摄动下对抗训练估计器的渐近行为
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiling Xie;Xiaoming Huo
  • 通讯作者:
    Xiaoming Huo

Xiaoming Huo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoming Huo', 18)}}的其他基金

Theoretical Guarantees of Statistical Methodologies Involving Nonconvex Objectives and the Difference-Of-Convex-Functions Algorithms
涉及非凸目标的统计方法和凸函数差分算法的理论保证
  • 批准号:
    2015363
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CHE/DMS Innovation Lab: Learning the Power of Data in Chemistry
CHE/DMS 创新实验室:了解化学数据的力量
  • 批准号:
    1848701
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
TRIPODS: Transdisciplinary Research Institute for Advancing Data Science (TRIAD)
TRIPODS:推进数据科学跨学科研究所 (TRIAD)
  • 批准号:
    1740776
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Workshop on the Algorithmic, Mathematical, and Statistical Foundations of Data Science
数据科学的算法、数学和统计基础研讨会
  • 批准号:
    1637436
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Fundamentals and Applications of Connect-the-Dots Methods
点连线方法的基础知识和应用
  • 批准号:
    0700152
  • 财政年份:
    2007
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Statistical Problems in Detectability
可检测性的统计问题
  • 批准号:
    0604736
  • 财政年份:
    2006
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
ACT SGER: Locating Sparse Events in High Speed Stream Data, with a Focus on Statistical Analysis
ACT SGER:定位高速流数据中的稀疏事件,重点是统计分析
  • 批准号:
    0346307
  • 财政年份:
    2003
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: a Focused Research Group on Multiscale Geometric Analysis -- Theory, Tools, and Applications
协作研究:多尺度几何分析的重点研究小组——理论、工具和应用
  • 批准号:
    0140587
  • 财政年份:
    2002
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Fifth North American Meeting of New Researchers in Statistics and Probability
第五届北美统计和概率新研究者会议
  • 批准号:
    0096528
  • 财政年份:
    2001
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似海外基金

Seamless integration of efficient 6G wireless technologies for communication and Sensing
用于通信和传感的高效 6G 无线技术的无缝集成
  • 批准号:
    10102305
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    EU-Funded
Battery-less Sensing Networks for Food Quality Control with Power Efficient Wireless Power Transfer System and Communication Capabilities
用于食品质量控制的无电池传感网络,具有高能效无线电力传输系统和通信功能
  • 批准号:
    2315370
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Communication-Efficient, Fault-Tolerant Private Information Retrieval over Erasure Coded Storage
SaTC:核心:小型:通过纠删码存储进行通信高效、容错的私人信息检索
  • 批准号:
    2326312
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
CAREER: Communication-efficient and topology-aware designs for geo-spatial analytics on heterogeneous platforms
职业:异构平台上地理空间分析的通信效率和拓扑感知设计
  • 批准号:
    2344578
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
  • 批准号:
    2311543
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
  • 批准号:
    2311544
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
CIF: Small: Generic Building Blocks of Communication-efficient Computation Networks - Fundamental Limits
CIF:小型:通信高效计算网络的通用构建块 - 基本限制
  • 批准号:
    2221379
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable & Communication Efficient Learning-Based Distributed Control
合作研究:可扩展
  • 批准号:
    2231350
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable & Communication Efficient Learning-Based Distributed Control
合作研究:可扩展
  • 批准号:
    2231349
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
SWIFT: Intelligent Spatio-Temporal Metamaterial Massive MIMO Aperture Arrays with Hybrid Learning-based Channel Classifiers for Spectrum-Efficient Secured Wireless Communication
SWIFT:智能时空超材料大规模 MIMO 孔径阵列,具有基于混合学习的信道分类器,可实现频谱高效的安全无线通信
  • 批准号:
    2229384
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了