Mathematical and computational modeling of fluid-structure-control interactions with multidisciplinary applications in science and engineering
流体-结构-控制相互作用的数学和计算建模与科学和工程中的多学科应用
基本信息
- 批准号:0610026
- 负责人:
- 金额:$ 20.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2008-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The efficient solution of modeling the complex nonlinear interaction of a fluid with a structure has remained a challenging problem in computational mathematics. Such applications often involve complex dynamic interactions of multiple physical processes which present a significant challenge, both in representing the multiphysics involved and in handling the resulting coupled behavior. If the desire to control and design the system is added to the picture, then the complexity increases even further. The focus of the proposed research will therefore be to sytematically develop non-conforming finite element methods tuned to high performance computing applied to several computatationally challenging multidisciplinary applications involving fluid-strucuture-control interaction. The thrust will be to mathematically and computationally investigate the stability, convergence and control of a variety of non-conforming finite element techniques and use this information to develop an efficient and general solution methodology for fluid-structure-control applications. More specifically, the proposed research will explore the robustness of this methodology by investigating (a) computational stability and convergence of fully-coupled algorithms; (b) computational stability and convergence for iterative coupling and; (c) theoretical and computational investigation for shape, boundary and distributed control applications. The performance of the compuational algorithms developed as a part of this research will be applied to two realistic fluid-structure applications: (a) Blood flow in a parent-artery-aneurysm multistructure and (b) Computational aeroelasticity of micro-air-vehicles. The proposed research aims to develop optimal computational algorithms for fluid-stucture-control interaction problems arising in science and engineering applications. The proposed work is highly multidisciplinary and the algorithms developed as a part of this research can be quickly adopted to a wide range of engineering and medical applications. For instance, this research may be used to better understand the rupture of aneurysms which are responsible for significant morbidity and mortality in the country. This work may also be used to develop enhanced and efficient design of micro air vehicles with flexible aircraft wings, that may be used for a variety of missions such as reconnaissance and surveillance, targeting, tagging, bio-chemical sensing and many more. Integrated with the research component is also an educational plan that will encourage interdisciplinary research, that will involve the pedagogical implications of the proposed research in curriculum development and that will contribute to the scientific development of graduate students, undergraduate students, high school students and teachers. More specifically, the proposed research will be used to develop learning modules that will be used to train students and teachers on the efficient use of compuatational mathematics to solve multidisciplinary problems in science and engineering. The research will also greatly encourage women and underrepresented minorities to pursue careers in computational mathematics, especially in interdisciplinary areas that bridge the biological, mathematical, and compuational sciences.
如何有效地模拟流体与结构的复杂非线性相互作用一直是计算数学中的一个具有挑战性的问题。这样的应用程序往往涉及复杂的动态相互作用的多个物理过程,提出了一个重大的挑战,无论是在表示所涉及的多物理场,并在处理所产生的耦合行为。如果控制和设计系统的愿望被添加到图片中,那么复杂性会进一步增加。因此,拟议的研究的重点将是系统地开发调整到高性能计算的非协调有限元方法,适用于几个计算上具有挑战性的多学科应用,涉及流体-结构-控制相互作用。推力将是数学和计算调查的稳定性,收敛性和控制的各种非协调有限元技术,并使用这些信息来开发一个有效的和一般的解决方法,流体结构控制应用。更具体地说,拟议的研究将探讨这种方法的鲁棒性,通过调查(一)计算稳定性和收敛性的完全耦合算法;(B)计算稳定性和收敛性的迭代耦合和;(c)理论和计算调查的形状,边界和分布式控制应用。作为本研究的一部分开发的计算算法的性能将被应用到两个现实的流体结构应用:(a)血液流动在父母动脉瘤多结构和(B)计算气动弹性的微型飞行器。拟议的研究旨在为科学和工程应用中出现的流体-结构-控制相互作用问题开发最佳计算算法。拟议的工作是高度多学科的,作为这项研究的一部分开发的算法可以迅速采用广泛的工程和医疗应用。例如,这项研究可用于更好地了解动脉瘤破裂,这是造成该国重大发病率和死亡率的原因。这项工作也可用于开发具有灵活机翼的微型飞行器的增强和有效设计,可用于各种任务,如侦察和监视,目标定位,标记,生化传感等等。与研究部分相结合的还有一项教育计划,该计划将鼓励跨学科研究,将涉及拟议研究对课程编制的教学影响,并将有助于研究生、本科生、高中生和教师的科学发展。 更具体地说,拟议的研究将用于开发学习模块,用于培训学生和教师有效使用计算数学来解决科学和工程中的多学科问题。这项研究还将极大地鼓励妇女和代表性不足的少数民族从事计算数学的职业,特别是在连接生物、数学和计算科学的跨学科领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Padmanabhan Seshaiyer其他文献
Lessons from the Ebola Outbreak: Action Items for Emerging Infectious Disease Preparedness and Response
- DOI:
10.1007/s10393-016-1100-5 - 发表时间:
2016-02-25 - 期刊:
- 影响因子:2.200
- 作者:
Kathryn H. Jacobsen;A. Alonso Aguirre;Charles L. Bailey;Ancha V. Baranova;Andrew T. Crooks;Arie Croitoru;Paul L. Delamater;Jhumka Gupta;Kylene Kehn-Hall;Aarthi Narayanan;Mariaelena Pierobon;Katherine E. Rowan;J. Reid Schwebach;Padmanabhan Seshaiyer;Dann M. Sklarew;Anthony Stefanidis;Peggy Agouris - 通讯作者:
Peggy Agouris
Padmanabhan Seshaiyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Padmanabhan Seshaiyer', 18)}}的其他基金
Collaborative Research: NSF Workshop on Models for Uncovering Rules and Unexpected Phenomena in Biological Systems (MODULUS)
合作研究:NSF 揭示生物系统规则和意外现象模型研讨会 (MODULUS)
- 批准号:
2232739 - 财政年份:2022
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Modeling, Analysis and Control of COVID-19 Spread in an Aircraft Cabin using Physics Informed Deep Learning
RAPID:协作研究:使用物理信息深度学习对机舱内的 COVID-19 传播进行建模、分析和控制
- 批准号:
2031029 - 财政年份:2020
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
Collaborative Research: RoL: FELS: Workshop - Rules of Life in the Context of Future Mathematical Sciences
合作研究:RoL:FELS:研讨会 - 未来数学科学背景下的生命规则
- 批准号:
1839608 - 财政年份:2018
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
Investigating Mathematical Modeling, Experiential Learning and Research through Professional Development and an Integrated Online Network for Elementary Teachers
通过专业发展和小学教师综合在线网络研究数学建模、体验式学习和研究
- 批准号:
1441024 - 财政年份:2014
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
REU Site: Research, Education and Training in Computational Mathematics and Nonlinear Dynamics of Bio-Inspired and Engineering Systems
REU 网站:计算数学以及仿生和工程系统非线性动力学的研究、教育和培训
- 批准号:
1062633 - 财政年份:2011
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
REU: Multidisciplinary REU in Computational Mathematics and Nonlinear Dynamics of Biological, Bio-inspired and Engineering Systems
REU:计算数学和生物、仿生和工程系统非线性动力学的多学科 REU
- 批准号:
0851612 - 财政年份:2009
- 资助金额:
$ 20.05万 - 项目类别:
Continuing Grant
Mathematical and computational modeling of fluid-structure-control interactions with multidisciplinary applications in science and engineering
流体-结构-控制相互作用的数学和计算建模与科学和工程中的多学科应用
- 批准号:
0813825 - 财政年份:2007
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
REU: Multidisciplinary Summer Undergraduate Research Program in Computation and Control of Biological and Biologically Inspired Systems
REU:生物和生物启发系统的计算与控制多学科夏季本科研究计划
- 批准号:
0552908 - 财政年份:2006
- 资助金额:
$ 20.05万 - 项目类别:
Continuing Grant
Mini-symposium on Mathematical and Computational Modeling of Biological Systems
生物系统数学与计算建模小型研讨会
- 批准号:
0325948 - 财政年份:2003
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
Non-Conforming HP Finite Element Methods for Computational Modeling of Problems in Science and Engineering
用于科学与工程问题计算建模的非相容 HP 有限元方法
- 批准号:
0207327 - 财政年份:2002
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
相似国自然基金
物体运动对流场扰动的数学模型研究
- 批准号:51072241
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mathematical Modeling and Scientific Computing for Infectious Disease Research
传染病研究的数学建模和科学计算
- 批准号:
10793008 - 财政年份:2023
- 资助金额:
$ 20.05万 - 项目类别:
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
- 批准号:
10734486 - 财政年份:2023
- 资助金额:
$ 20.05万 - 项目类别:
Mathematical modeling of Mycobacterium tuberculosis dissemination
结核分枝杆菌传播的数学模型
- 批准号:
10364119 - 财政年份:2022
- 资助金额:
$ 20.05万 - 项目类别:
Mathematical Models of Tau-PET Measures and Cognitive Decline in Alzheimer’s Disease Across the Lifespan
Tau-PET 测量的数学模型和阿尔茨海默病整个生命周期中的认知衰退
- 批准号:
10448899 - 财政年份:2022
- 资助金额:
$ 20.05万 - 项目类别:
Predicting Pediatric Sickle Cell Disease Acute Pain Using Mathematical Models Based on mHealth Data
使用基于移动健康数据的数学模型预测儿童镰状细胞病急性疼痛
- 批准号:
10599401 - 财政年份:2022
- 资助金额:
$ 20.05万 - 项目类别:
Mathematical modeling of Mycobacterium tuberculosis dissemination
结核分枝杆菌传播的数学模型
- 批准号:
10612718 - 财政年份:2022
- 资助金额:
$ 20.05万 - 项目类别:
Mathematical and computational modeling of suicidal thoughts and behaviors
自杀想法和行为的数学和计算模型
- 批准号:
10437592 - 财政年份:2021
- 资助金额:
$ 20.05万 - 项目类别:
Metabolic determinants of metastatic heterogeneity: quantitative experiments and mathematical models
转移异质性的代谢决定因素:定量实验和数学模型
- 批准号:
10448245 - 财政年份:2021
- 资助金额:
$ 20.05万 - 项目类别:
Mathematical and Computational Modeling of Interaction between Fluids and Poroelastic Structures
流体与多孔弹性结构之间相互作用的数学和计算模型
- 批准号:
2111129 - 财政年份:2021
- 资助金额:
$ 20.05万 - 项目类别:
Standard Grant
Metabolic determinants of metastatic heterogeneity: quantitative experiments and mathematical models
转移异质性的代谢决定因素:定量实验和数学模型
- 批准号:
10231357 - 财政年份:2021
- 资助金额:
$ 20.05万 - 项目类别: