MRI: Development of a Computer Network for Experimental and Non-Experimental Data Collection via the Internet from a Nationally Representative Sample of American Households

MRI:开发计算机网络,用于通过互联网从美国家庭的全国代表性样本中收集实验和非实验数据

基本信息

  • 批准号:
    0619956
  • 负责人:
  • 金额:
    $ 199.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

For many decades, numerous important decisions made by governments and businesses around the United States have been informed by data collected through representative sample surveys of Americans. Billions of US dollars are spent every year so that one can learn the nation's unemployment rate, its inflation rate, and much more about the experiences of Americans that govern policy-making, cost-effectively and quickly through surveys. In recent years, there has also been a sharp increase in the use of survey data by academic researchers to enhance theory development in a wide range of important domains, providing insights into the nature of contemporary social life, the workings of the human mind, and approaches to solving pressing national problems. At the same time, the nation has experienced a sharp increase in the costs of conducting high-quality surveys, coupled with a decline in the response rates of such surveys. The U.S. federal, state, and local governments, the private sector, and the academy therefore need quick innovation in survey methodology to permit cost-effective collection of accurate data from highly representative samples in the future.This project will take an unprecedented step to test a new methodology to achieve this goal. If this trial works, the methodology will be available for use by all organizations around the country that are committed to making informed policy-making decisions. The tool to be built will bring a new standard of accuracy to data, provide broad accessibility to social scientists at reduced cost, and blend the analytic power afforded by a state-of-the art computer network laboratory with the generalization power afforded by a representative sample survey of American households. Specifically, the project will purchase computer hardware, install the hardware in a representative sample of 1,000 households across the country, and calibrate the national network of computers via the Internet, testing to assure that it works properly to permit social science survey data collection. The network will enable path-breaking research that could not be achieved by any methodology currently in use and would considerably increase the value of the data collected, analyzed, and reported.Sampling statisticians will draw a representative sample of American households using an innovative method based upon U.S. postal service mailing address lists. Then, installation specialists will visit the selected households, randomly select an adult household member, conduct a brief interview face-to-face (with an expected response rate of about 80%), and then offer him or her a free laptop computer and free high-speed Internet connection in exchange for using the equipment to provide data once a month via the Internet. The installation specialists will install the computers, walk respondents through the process of using them, and calibrate the equipment on site to work properly. Then, once a month, respondents will provide a new round of data by accessing a secure webpage, and calibration of the computer network will be conducted. The opportunity to collect data on this platform will be made available to government agencies, businesses, and academic scholars. A range of different evaluations of the network will be performed to assess its effectiveness. If this effort is successful, it will provide scientific and practical justification for the implementation of this approach to experimental and non-experimental survey data collection on a much larger scale, which will enable academic researchers, federal, state, and local government agencies, and private commercial and non-commercial organizations to conduct the highest quality research at a practical price.
几十年来,美国各地政府和企业做出的许多重要决策都是通过对美国人进行代表性抽样调查收集的数据得出的。 每年花费数十亿美元,以便人们可以通过调查了解国家的失业率,通货膨胀率以及更多关于美国人管理决策的经验,具有成本效益和快速。 近年来,学术研究人员也越来越多地使用调查数据来加强广泛重要领域的理论发展,深入了解当代社会生活的本质,人类思想的运作以及解决紧迫国家问题的方法。 与此同时,该国进行高质量调查的费用急剧增加,加上这种调查的答复率下降。因此,美国联邦、州和地方政府、私营部门和学术界需要在调查方法上迅速创新,以便在未来从具有高度代表性的样本中以成本效益的方式收集准确的数据。本项目将迈出前所未有的一步,测试一种新的方法来实现这一目标。 如果这项试验成功,全国各地致力于做出知情决策的所有组织都将使用这一方法。 该工具将为数据的准确性带来新的标准,以更低的成本为社会科学家提供广泛的可访问性,并将最先进的计算机网络实验室所提供的分析能力与美国家庭代表性抽样调查所提供的概括能力相结合。具体而言,该项目将购买计算机硬件,在全国1 000户有代表性的家庭中安装硬件,并通过互联网校准全国计算机网络,进行测试,以确保其正常工作,从而能够收集社会科学调查数据。该网络将使目前使用的任何方法都无法实现的开创性研究成为可能,并将大大增加收集,分析和报告的数据的价值。抽样统计学家将使用基于美国邮政服务邮寄地址列表的创新方法抽取美国家庭的代表性样本。然后,安装专家会到访选定的住户,随机抽取一名成年住户成员,进行简短的面对面访问(预期回应率约为80%),然后提供一部免费手提电脑和免费高速互联网连接,以换取使用该设备每月一次通过互联网提供数据。安装专家将安装计算机,引导受访者完成使用计算机的过程,并在现场校准设备以使其正常工作。然后,每月一次,受访者将通过访问安全网页提供新一轮数据,并进行计算机网络校准。 在这个平台上收集数据的机会将提供给政府机构,企业和学术学者。 将对该网络进行一系列不同的评价,以评估其有效性。 如果这项工作取得成功,它将为在更大规模上实施这种实验和非实验调查数据收集方法提供科学和实际的理由,这将使学术研究人员,联邦,州和地方政府机构以及私人商业和非商业组织能够以实际的价格进行最高质量的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jon Krosnick其他文献

High replicability of newly discovered social-behavioural findings is achievable
新发现的社会行为研究结果的高度可复制性是可以实现的
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    29.9
  • 作者:
    John Protzko;Jon Krosnick;Leif D. Nelson;B. Nosek;Jordan R. Axt;Matt Berent;N. Buttrick;Matthew DeBell;C. Ebersole;Sebastian Lundmark;Bo MacInnis;Michael O'Donnell;Hannah Perfecto;J. Pustejovsky;Scott S. Roeder;Jan Walleczek;J. Schooler
  • 通讯作者:
    J. Schooler
RETRACTED ARTICLE: High replicability of newly discovered social-behavioural findings is achievable
撤回文章:新发现的社会行为研究结果具有高度可重复性是可以实现的
  • DOI:
    10.1038/s41562-023-01749-9
  • 发表时间:
    2023-11-09
  • 期刊:
  • 影响因子:
    15.900
  • 作者:
    John Protzko;Jon Krosnick;Leif Nelson;Brian A. Nosek;Jordan Axt;Matt Berent;Nicholas Buttrick;Matthew DeBell;Charles R. Ebersole;Sebastian Lundmark;Bo MacInnis;Michael O’Donnell;Hannah Perfecto;James E. Pustejovsky;Scott S. Roeder;Jan Walleczek;Jonathan W. Schooler
  • 通讯作者:
    Jonathan W. Schooler
Ben Franklin’s Whistle, Cost Expectations, and the Choice of Valuation Format
  • DOI:
    10.1007/s10640-025-00969-z
  • 发表时间:
    2025-03-31
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Michael Hanemann;Jon Krosnick;Lisanne Wichgers;Jeffrey Wooldridge;Stephanie Lampron;Daniel Schneider;Eric M. Shaeffer;Trevor Tompson;Penny Visser
  • 通讯作者:
    Penny Visser

Jon Krosnick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jon Krosnick', 18)}}的其他基金

Implicit Bias Conference
隐性偏见会议
  • 批准号:
    1651174
  • 财政年份:
    2017
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Standard Grant
EAGER: Consumer Innovation Survey Development
EAGER:消费者创新调查开发
  • 批准号:
    1751723
  • 财政年份:
    2017
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Standard Grant
Conferences on the Future of Survey Research
调查研究的未来会议
  • 批准号:
    1256359
  • 财政年份:
    2012
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Standard Grant
Stanford Summer Institute in Political Psychology 2010-2012
斯坦福政治心理学暑期学院 2010-2012
  • 批准号:
    0963212
  • 财政年份:
    2010
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Continuing Grant
Documenting the Mechanisms of Belief and Attitude Change on Controversial Issues: The Case of Global Warming and Trust in Scientists
记录有争议问题的信念和态度改变的机制:全球变暖和对科学家的信任的案例
  • 批准号:
    1042938
  • 财政年份:
    2010
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Standard Grant
2009 Summer Institute in Political Psychology
2009年政治心理学暑期学院
  • 批准号:
    0921034
  • 财政年份:
    2009
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Standard Grant
2008 Summer Institute in Political Psychology
2008年政治心理学暑期学院
  • 批准号:
    0820732
  • 财政年份:
    2008
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Standard Grant
Cooperative Agreement - 2006-2007 Survey Research Methodology Optimization for the Science Resources Statistics Program
合作协议 - 2006-2007年科学资源统计计划调查研究方法优化
  • 批准号:
    0650929
  • 财政年份:
    2007
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Standard Grant
2007 Summer Institute in Political Psychology, Stanford University
2007 斯坦福大学政治心理学暑期学院
  • 批准号:
    0643382
  • 财政年份:
    2007
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research in Political Science: The Effect of Polls on Political Behavior
政治学博士论文研究:民意调查对政治行为的影响
  • 批准号:
    0720444
  • 财政年份:
    2007
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Collaborative Research: ER2: The development of research ethics governance projects in computer science
合作研究:ER2:计算机科学中研究伦理治理项目的发展
  • 批准号:
    2419951
  • 财政年份:
    2023
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Standard Grant
Computer-aided design and development of isoform selective inhibitors of Casein Kinase 1
酪蛋白激酶 1 异构体选择性抑制剂的计算机辅助设计和开发
  • 批准号:
    10629703
  • 财政年份:
    2023
  • 资助金额:
    $ 199.97万
  • 项目类别:
Development of a University-Community Partnership to Offer Informal Computer Science Opportunities to Children and Youth Diagnosed with Autism Spectrum Disorder
发展大学与社区的合作伙伴关系,为诊断患有自闭症谱系障碍的儿童和青少年提供非正式的计算机科学机会
  • 批准号:
    2313418
  • 财政年份:
    2023
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Standard Grant
Development of medical computer vision system and the clinical application
医学计算机视觉系统开发及临床应用
  • 批准号:
    23K07084
  • 财政年份:
    2023
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an sEMG-based Human-Computer Interface Utilizing Deep Transfer Learning and Continual Learning
利用深度迁移学习和持续学习开发基于表面肌电图的人机界面
  • 批准号:
    23H03445
  • 财政年份:
    2023
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: ER2: The development of research ethics governance projects in computer science
合作研究:ER2:计算机科学中研究伦理治理项目的发展
  • 批准号:
    2226201
  • 财政年份:
    2023
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Standard Grant
Computer Science Teacher Professional Development Passport Alliance
计算机科学教师专业发展护照联盟
  • 批准号:
    2327863
  • 财政年份:
    2023
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Standard Grant
Collaborative Research: ER2: The development of research ethics governance projects in computer science
合作研究:ER2:计算机科学中研究伦理治理项目的发展
  • 批准号:
    2226200
  • 财政年份:
    2023
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Standard Grant
Development of closed-loop control systems for therapeutic applications of brain-computer interfaces
脑机接口治疗应用闭环控制系统的开发
  • 批准号:
    2743399
  • 财政年份:
    2022
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Studentship
Development of the Real-time Lifting Assessment tool based on Computer Vision
基于计算机视觉的实时举升评估工具开发
  • 批准号:
    576741-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 199.97万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了