RUI: Comparative Analysis of Small RNA Motifs

RUI:小 RNA 基序的比较分析

基本信息

  • 批准号:
    0621509
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-15 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

RNA is made up of four nucleotide bases: adenine (A), guanine (G), uracil (U) and cytosine (C). The order in which these four bases are found in any RNA is called its sequence. These bases interact with each other, A with U (A-U) and G with C (G-C) to form canonical base pairs. Many unique combinations of interactions occur in RNA, for example, G with A (G.A) or G with U (G.U) to form non-canonical base pairs. Other interactions also occur, for example, a few A's can stack on top of each other or an unpaired U can interact with an A-U pair to form U.A-U base triple. Currently, when RNA is folded using the known rules of interactions, many regions of RNA are left in "bulges" and "loops". The rules for structure formation within these regions are not known; however, these sites are known to be involved in interactions with proteins, RNA, and drugs. This project will focus on small bulge structures that are found in many different RNA and are stable in the absence of the large RNA. One such structure is a three-nucleotide bulge that is commonly found in important regions of many RNA, such as ribosomal RNA, AIDS-causing human immunodeficiency virus type 1 (HIV-1), and in small RNA called micro-RNA. There are many questions that need to be answered : are all three-nucleotide bulge RNA forming similar structures? What happens to the structure and stability of RNA if the bulge sequences become slightly bigger or smaller? Do these bulge nucleotides interact with other neighboring portions of RNA? If the presence of a bulge sequence causes RNA to bend, can we predict the bend angle and the energy required to do so? Do the bulge sequences bind to metal ions? Does the metal binding help stabilize or straighten the RNA? To understand the structure and function of short bulged RNA, the energy required to "undo" the structure will be measured; the stronger the structure, the more energy it will take to unfold. The RNA sequence in and around the bulge will be altered to determine the corresponding changes in energy required to unfold the RNA. Since the shape of RNA determines how it moves through a matrix or absorbs certain types of light, these techniques will be used to study bending of RNA. How tightly certain metal ions and other molecules bind to RNA will also be measured. The importance of this study is first and foremost to understand the basic structures that form in RNA. This research will determine general patterns that are to be expected for small bulged sequences. These "rules" can then be included in computer programs that are currently used to predict RNA structures. As these bulge sequences are derived from functionally important RNA, this study will improve the link between the structure and function of these RNA. The nucleotide sequence for DNA and RNA of many organisms is currently available. Thus, improving the ability to link this information to the structure and function of molecules will enhance the usefulness of the genome databases. For example, many new pathogens, including organisms used in bio-terrorism, can now be sequenced quickly. To design RNA-based drugs to neutralize a pathogen will require a very detailed understanding of local and global structures of functionally important RNA for both the pathogen and the host.The broader impact of this research is that it will be done with undergraduate students. Students will start working on independent research projects starting as early as their first year of college. This research will also be incorporated into nucleic acid biochemistry courses. By participating, students interested in the biological sciences will learn quantitative research methods and will improve their mathematical skills. Abstract concepts learned in courses will become more interesting when applied to real life problems. Students will participate in course-linked outreach activities in their local communities and K-12 school system. Students will use their knowledge to provide information on biochemistry of diseases and drugs to their communities, which in turn will make science relevant to their own lives. Students will work with K-12 school system to provide mentoring and to direct science-based activities to keep the younger students curious about science. Students will get an opportunity to work with scientists in three different countries and will experience the international nature of research. These projects will bring the excitement of research into the undergraduate environment. The equipment and expertise will be shared with neighboring schools and it will benefit everyone involved. Student researchers will be encouraged to become members of professional societies, such as the American Society for Biochemistry and Molecular Biology (ASBMB), and will be given opportunities to present their research at regional, national, and international meetings. Towards this end, Undergraduate Affiliate Network (UAN) has been created by ASBMB and students have started a local chapter. The research and outreach experiences will help students to see the relevance of science to real world problems, and to realize that they, as scientists, can make a difference in their communities.
核糖核酸由四个核苷酸组成:腺嘌呤(A)、鸟嘌呤(G)、尿嘧啶(U)和胞嘧啶(C)。在任何RNA中发现这四个碱基的顺序称为ITS序列。这些碱基相互作用,A与U(A-U),G与C(G-C)形成正则碱基对。RNA中存在许多独特的相互作用组合,例如G与A(G.A)或G与U(G.U)形成非正则碱基对。其他相互作用也会发生,例如,几个A可以堆叠在一起,或者未配对的U可以与A-U对相互作用,形成U-A-U碱基三元组。目前,当使用已知的相互作用规则折叠RNA时,RNA的许多区域会留在“凸起”和“环状”中。这些区域内的结构形成规则尚不清楚,但已知这些位置涉及与蛋白质、RNA和药物的相互作用。该项目将专注于在许多不同的RNA中发现的小凸起结构,并且在没有大RNA的情况下是稳定的。一种这样的结构是三核苷酸突起,通常存在于许多RNA的重要区域,如核糖体RNA、导致艾滋病的人类免疫缺陷病毒1型(HIV-1),以及在称为微型RNA的小RNA中。有许多问题需要回答:所有的三核苷酸凸起RNA都形成类似的结构吗?如果凸起序列变得稍大或变小,RNA的结构和稳定性会发生什么?这些凸起的核苷酸是否与RNA的其他邻近部分相互作用?如果凸起序列的存在导致RNA弯曲,我们能预测弯曲角度和这样做所需的能量吗?凸起序列是否与金属离子结合?金属结合是否有助于稳定或拉直RNA?为了了解短膨胀的RNA的结构和功能,我们将测量“解开”结构所需的能量;结构越坚固,展开所需的能量就越多。凸起内和周围的RNA序列将被改变,以确定展开RNA所需能量的相应变化。由于RNA的形状决定了它如何通过基质或吸收某些类型的光,这些技术将被用来研究RNA的弯曲。还将测量某些金属离子和其他分子与RNA结合的紧密程度。这项研究的重要性首先是要了解RNA中形成的基本结构。这项研究将确定预期的小型凸起序列的一般模式。然后,这些“规则”可以被包括在目前用于预测RNA结构的计算机程序中。由于这些凸起序列来自功能重要的RNA,本研究将改善这些RNA结构与功能之间的联系。许多生物的DNA和RNA的核苷酸序列目前是可用的。因此,提高将这些信息与分子的结构和功能联系起来的能力将增强基因组数据库的实用性。例如,许多新的病原体,包括用于生物恐怖主义的生物体,现在可以快速测序。要设计基于RNA的药物来中和病原体,需要非常详细地了解对病原体和宿主都具有重要功能的RNA的局部和全局结构。这项研究的更广泛影响是,它将在本科生中完成。学生们从大学一年级就开始从事独立研究项目。这项研究还将纳入核酸生物化学课程。通过参与,对生物科学感兴趣的学生将学习定量研究方法,并将提高他们的数学技能。在课程中学到的抽象概念在应用到现实生活中的问题时会变得更有趣。学生将在当地社区和K-12学校系统参加与课程相关的外展活动。学生将利用他们的知识向他们的社区提供疾病和药物的生物化学信息,这反过来将使科学与他们自己的生活相关。学生将与K-12学校系统合作,提供指导和指导基于科学的活动,以保持年轻学生对科学的好奇心。学生们将有机会与三个不同国家的科学家合作,并体验研究的国际性。这些项目将把研究的兴奋带入本科生环境中。这些设备和专业知识将与邻近的学校共享,这将使参与其中的每个人都受益。将鼓励学生研究人员成为专业学会的成员,如美国生物化学和分子生物学学会(ASBMB),并将有机会在地区、国家和国际会议上展示他们的研究成果。为此,ASBMB创建了本科生附属机构网络(UAN),学生们开始在当地开设分会。研究和推广经验将帮助学生看到科学与现实世界问题的相关性,并认识到作为科学家,他们可以在他们的社区中发挥作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neena Grover其他文献

Photolytische DNA-Spaltung mit [Pt2(P2O5H2)4]4−†
光解DNA-Spaltung mit [Pt2(P2O5H2)4]4−†
  • DOI:
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William A. Kalsbeck;Neena Grover;H. Thorp
  • 通讯作者:
    H. Thorp
[RuO(dppz)(tpy)]2+: ein DNA‐Spaltungsreagens mit hoher DNA‐Affinität
[RuO(dppz)(tpy)]2+:具有高 DNA 亲和力的 DNA-Spaltungsreagens
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Gupta;Neena Grover;Gregory A. Neyhart;Weigen Liang;Phirtu Singh;H. Thorp
  • 通讯作者:
    H. Thorp

Neena Grover的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neena Grover', 18)}}的其他基金

RUI: Examining Non-Canonical Interactions in Small RNA Motifs
RUI:检查小 RNA 基序中的非典型相互作用
  • 批准号:
    0950582
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Student-Centered Education in Molecular Life Sciences: Essentials for Educating the Biochemistry and Molecular Biology Undergraduates ASBMB Conf; Colorado Springs, CO; August 5-8
以学生为中心的分子生命科学教育:生物化学和分子生物学本科生教育要点 ASBMB Conf;
  • 批准号:
    0933938
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RUI: Dynamic Learning in Comparative Courts: A Cross-National Analysis of Judicial Decision Making in Canada, the United States, and the United Kingdom
合作研究:RUI:比较法院的动态学习:加拿大、美国和英国司法决策的跨国分析
  • 批准号:
    2325460
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Comparative analysis of endocytic trafficking during cell division
合作研究:RUI:细胞分裂过程中内吞运输的比较分析
  • 批准号:
    2052517
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Comparative analysis of endocytic trafficking during cell division
合作研究:RUI:细胞分裂过程中内吞运输的比较分析
  • 批准号:
    2052511
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Comparative analysis of endocytic trafficking during cell division
合作研究:RUI:细胞分裂过程中内吞运输的比较分析
  • 批准号:
    2052493
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: The long-term consequences of anthropogenic activity: a comparative analysis of human-mediated evolution and the origins of rural commensalism
RUI:人类活动的长期后果:人类介导的进化和农村共生主义起源的比较分析
  • 批准号:
    1947306
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Dynamic Learning in Comparative Courts: A Cross-National Analysis of Judicial Decision Making in Canada, the United States, and the United Kingdom
合作研究:RUI:比较法院的动态学习:加拿大、美国和英国司法决策的跨国分析
  • 批准号:
    1921268
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Dynamic Learning in Comparative Courts: A Cross-National Analysis of Judicial Decision Making in Canada, the United States, and the United Kingdom
合作研究:RUI:比较法院的动态学习:加拿大、美国和英国司法决策的跨国分析
  • 批准号:
    1921267
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Comparative Transcriptomic and Proteomic Analysis of Phytochrome Responses in Tomato
RUI:番茄光敏色素反应的比较转录组学和蛋白质组学分析
  • 批准号:
    1339222
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Adding Segments One by One: A Comparative Analysis of the Growth Zone in Arthropods
合作研究:RUI:逐一添加节段:节肢动物生长区的比较分析
  • 批准号:
    1024220
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RUI: Comparative Structure/Function Analysis of Phosphagen Kinases
RUI:磷酸原激酶的比较结构/功能分析
  • 批准号:
    0344432
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了