CompBio: Integration of Bioinformatics Modeling and Coarse Grain Dynamics: A New Computational Approach to Solve Complex Biological Problems
CompBio:生物信息学建模与粗粒动力学的集成:解决复杂生物学问题的新计算方法
基本信息
- 批准号:0622162
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from the Emerging Models and Technologies for Computation Program (EMT), the researchers at University of the Sciences in Philadelphia (USP) plan to develop a novel computational approach for studying complex biological systems. In this proposal we plan on studying a small part of the signal transduction pathway used in chemotaxis (the movement in response to a chemical). Our approach combines bioinformatics-assisted molecular modeling techniques with a novel coarse grain (CG) molecular dynamics method. The proposed work includes three major parts. First, new CG protein models and parameters will be developed to compliment the recently created CG dynamics program and CG lipid bilayer models. Second, a complex structural framework of a transmembrane signal transduction system, the bacterial chemotaxis protein complexes, will be constructed by utilizing a variety of bioinformatics and molecular modeling techniques such as primary sequence analysis, homology modeling, docking and random loop building. Third, the complex structural framework will be mapped into the CG representation of the protein and lipid bilayer. The CG simulations at the millisecond scale will be carried out to characterize structural, conformational and dynamic properties of the bacterial chemotaxis system. The major advantage of CG dynamics simulation is that the computational demands are approximately four orders of magnitudes less than the conventional all-atom molecular dynamics, at the expense of some atomistic details. It will thus enable dynamics simulations of a biological transmembrane system to the milliseconds timescale for the first time. Since many biological events of interest (e.g. signal transduction) happen on this time scale, the proposed simulations will significantly enhance our computational capabilities in solving complex biological problems. Through the simulation, specific conformational changes as part of the signaling process in the cytoplasmic domain, which remains unknown, will be elucidated. While the results are important in themselves, they will serve to demonstrate the power of these techniques, and allow for extensions into other fields with temporal and spatial limitations. The results will accelerate the research on membrane proteins and by extension, have a broad and significant impact in a wide number of research areas, including computational biology, chemistry, biochemistry, physical chemistry, as well as related fields such as medicine, biology and physics. The proposed work will be carried out by collaboration of a group of experts from different areas of computational biology and chemistry at USP. Graduate students from different disciplines (bioinformatics, chemistry, computer science) will be trained and perform many of the proposed studies, thus the grant will promote teaching and training of students and learning across scientific disciplines. Additionally, the results of the research will be broadly disseminated by publication in peer-reviewed journals, at national and international conferences, on web sites and in the classrooms. The computer programs generated as well as parameters developed will be shared freely to benefit academic and non-commercial researches, via internet and public licensing.
在新兴模型和技术计算计划(EMT)的支持下,费城科学大学(USP)的研究人员计划开发一种新的计算方法来研究复杂的生物系统。在这个提议中,我们计划研究趋化性中使用的一小部分信号转导途径(响应化学物质的运动)。我们的方法结合了生物信息学辅助的分子建模技术与一种新的粗粒(CG)分子动力学方法。拟议的工作包括三个主要部分。首先,将开发新的CG蛋白模型和参数,以补充最近创建的CG动力学程序和CG脂质双层模型。第二,利用生物信息学和分子模拟技术,如一级序列分析、同源模建、对接和随机环构建,构建跨膜信号转导系统的复杂结构框架--细菌趋化蛋白复合物。第三,将复杂的结构框架映射到蛋白质和脂质双层的CG表示。在毫秒级的CG模拟将进行表征细菌趋化系统的结构,构象和动力学特性。CG动力学模拟的主要优点是计算需求比传统的全原子分子动力学少大约四个数量级,但牺牲了一些原子细节。因此,它将使生物跨膜系统的动力学模拟首次达到毫秒级。由于许多感兴趣的生物事件(如信号转导)发生在这个时间尺度上,所提出的模拟将显着提高我们在解决复杂的生物问题的计算能力。通过模拟,特定的构象变化的一部分,在细胞质结构域的信号转导过程,这仍然是未知的,将得到阐明。虽然结果本身很重要,但它们将有助于展示这些技术的力量,并允许扩展到具有时间和空间限制的其他领域。这些结果将加速对膜蛋白的研究,并在许多研究领域产生广泛而重大的影响,包括计算生物学,化学,生物化学,物理化学以及相关领域,如医学,生物学和物理学。拟议的工作将由来自USP计算生物学和化学不同领域的专家组合作进行。来自不同学科(生物信息学,化学,计算机科学)的研究生将接受培训,并进行许多拟议的研究,因此赠款将促进学生的教学和培训以及跨科学学科的学习。此外,研究结果将通过在同行评审的期刊上发表、在国家和国际会议上、在网站上和课堂上广泛传播。生成的计算机程序以及开发的参数将通过互联网和公共许可免费共享,以造福学术和非商业研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Preston Moore其他文献
Cybersecurity Shuffle: Using Card Magic to Teach Introductory Cybersecurity Topics
网络安全 Shuffle:使用 Card Magic 教授网络安全入门主题
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Preston Moore;Justin Cappos - 通讯作者:
Justin Cappos
Preston Moore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Preston Moore', 18)}}的其他基金
MRI: Acquisition of a High Performance CPU-GPU Computer Cluster for Scientific Computing at U Sciences
MRI:在 U Sciences 采购用于科学计算的高性能 CPU-GPU 计算机集群
- 批准号:
1229564 - 财政年份:2012
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Acquisition of a 64-Processor 64-Bit Parallel Computer Cluster
采购 64 处理器 64 位并行计算机集群
- 批准号:
0420556 - 财政年份:2005
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
相似海外基金
Systems Biology, Bioinformatics, & Data Integration
系统生物学、生物信息学、
- 批准号:
10459538 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Systems Biology, Bioinformatics, & Data Integration
系统生物学、生物信息学、
- 批准号:
10653908 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Systems Biology, Bioinformatics, & Data Integration
系统生物学、生物信息学、
- 批准号:
10271171 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Bioinformatics "Train the Trainer" (T3): The Integration of Bioinformatics into an Undergraduate Biology Curriculum
生物信息学“培训师培训”(T3):生物信息学融入本科生物学课程
- 批准号:
10197953 - 财政年份:2017
- 资助金额:
$ 27.5万 - 项目类别:
Bioinformatics "Train the Trainer" (T3): The Integration of Bioinformatics into an Undergraduate Biology Curriculum
生物信息学“培训师培训”(T3):生物信息学融入本科生物学课程
- 批准号:
9428087 - 财政年份:2017
- 资助金额:
$ 27.5万 - 项目类别:
EDU: Collaborative: Enhancing Education in Genetic Privacy with Integration of Research in Computer Science and Bioinformatics
EDU:协作:通过整合计算机科学和生物信息学研究来加强遗传隐私教育
- 批准号:
1523115 - 财政年份:2015
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
EDU: Collaborative: Enhancing Education in Genetic Privacy with Integration of Research in Computer Science and Bioinformatics
EDU:协作:通过整合计算机科学和生物信息学研究来加强遗传隐私教育
- 批准号:
1523154 - 财政年份:2015
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
MICA: UK MEDical BIOinformatics partnership - aggregation, integration, visualisation and analysis of large, complex data (UK MED-BIO).
MICA:英国医学生物信息学合作伙伴关系 - 大型复杂数据的聚合、集成、可视化和分析(英国 MED-BIO)。
- 批准号:
MR/L01632X/1 - 财政年份:2014
- 资助金额:
$ 27.5万 - 项目类别:
Research Grant
Bioinformatics and microgenomics integration for discovering cell specific gene regulation in a complex plant genome
生物信息学和微观基因组学整合,用于发现复杂植物基因组中的细胞特异性基因调控
- 批准号:
283303-2010 - 财政年份:2014
- 资助金额:
$ 27.5万 - 项目类别:
Discovery Grants Program - Individual